PERSONAL ELECTRONIC MEDICINE ORGANIZER

A Thesis Presented to the Faculty of the Graduate Program College of Engineering Technological University of the Philippines Ermita, Manila

In Partial Fulfillment of the Requirements for the Degree of Master of Science in Electrical Engineering Major in Electronics

Katrina Chereen B. Acapulco

February 2010

ABSTRACT

This thesis is a development of a Personal Medicine Organizer intended as a storage, scheduler and organizer of medicine. It utilized a constructive method of research.

The Personal Medicine Organizer consists of hardware and a software sections. The hardware part is made up of the tack switches that are used to input data such as time, date and slot numbers and also for the on-off, reset and dc buttons. The output devices on the other hand are made up of the LCD for visual display, buzzer for the alarm and a plastic medicine organizer for the actual medicine storage. The entire device is controlled by a PIC Microcontroller programmed using Assembly Language. The software part consists of several applications such as timer for proper scheduling of medicines, counter for proper tracking of the quantity of medicines and memory for the storage and status of each of the six slots in the medicine organizer. The device can be operated by using either an A27, 12V battery which was chosen because of its size and by an external AC-DC adaptor. The actual operation of the device can be simulated using the Proteus from the Proton Integrated Development Environment Software.

Actual tests shows that the device is functional with all components working as intended. The device's accuracy, in terms of date, time and alarm settings, was also established as operated in sync with a standard clock during test. A robust testing method ascertained the reliability of the device when same results were obtained during repeated trials. A user's manual and proper labeling of critical parts helps make the device user-friendly, plus the fact that it can be powered up by either an ac or dc source.

TABLE OF CONTENTS

Title Page	Page
Approval Sheet	ii
Dedication	iii
Acknowledgement	iv
Abstract	V
Table of Contents	vi
List of Tables	viii
List of Figures	ix
CHAPTER I – PROBLEM AND ITS BACKGROUND	
Introduction	1
Objectives	3
Scope and Limitations	5
Significance of the Study	6

CHAPTER 2 – REVIEW OF RELATED LITERATURE AND STUDIES

Foreign Literature and Studies	8
Local Literature and Studies	40
Conceptual Framework	45
Definition of Terms	47

CHAPTER 3 – RESEARCH METHODOLOGY

Project Design	48
Project Development	51
System Flowchart	55
Testing Procedure	57

CHAPTER 4 – RESULTS AND DISCUSSION

Project Structure	58
Project Schematic Diagrams	65
Project Simulation	68
Project Testing	69
CHAPTER 5 – SUMMARY OF FINDINGS, CONCLUSIONS &	
RECOMMENDATIONS	
Summary of Findings	78
Conclusion	80
Recommendations	81
REFERENCES	82
APPENDICES	
APPENDIX A Source Code	85
APPENDIX B User's Manual	104
APPENDIX C Data Sheets	114
RESEARCHER'S PROFILE	

LIST OF TABLES

TABLE	TITLE	PAGE
Table 1	Pin Configurations of NE555	32
Table 2	Time and Date Settings vs Actual Clock	70
Table 3	Actual Clock Time vs Alarm Settings Once a Day	72
Table 4	Actual Clock Time vs Alarm Settings	73
Table 5	Different Slots with Same Time Medicine Intake	74
Table 6	Different Slots with Same Time Medicine Intake	75
Table 7	Power Supply	76

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 1	CompuMed Automatic Pill Dispenser	9
Figure 2	Color Coded Pill Case	10
Figure 3	Pill Box with Alarm	11
Figure 4	Automatic Pill Dispenser	12
Figure 5	e-Pill Multi-Alarm Plus Timer Pill Box	13
Figure 6	PIC16F874/PIC16F877 Block Diagram	18
Figure 7	LCD Display	28
Figure 8	NE555	31
Figure 9	Internal Schematics	31
Figure 10	Schematic Symbol	31
Figure 11	Monostable Mode	33
Figure 12	Astable Circuit	34
Figure 13	Asynchronous Counters	38
Figure 14	4-Bit Synchronous Counter	39
Figure 15	Basic Medicine Organizer	41
Figure 16	Medicine Cabinet	42
Figure 17	IPO Model	46
Figure 18	Block Diagram of the Project Design	48
Figure 19	Project Development Flowchart	51
Figure 20	System Flowchart	55
Figure 21	Project Components	58

Figure 22	Plastic Medicine Container	58
Figure 23	PIC 16F877A	60
Figure 24	PCB Design	60
Figure 25	Component Position Lay-out	60
Figure 26	Component Mounted on a PCB	61
Figure 27	Component Mounted on a PCB with PIC	61
Figure 28	Initial Testing	61
Figure 29	Initial Testing 2	61
Figure 30	Circuit on the Box	62
Figure 31	Circuit on the Box with PIC	62
Figure 32	Showing the Navigation Buttons	62
Figure 33	ON-OFF, RESET and DC Buttons	62
Figure 34	A27 12 Volts Battery	63
Figure 35	A27 12 Volts Battery 2	63
Figure 36	Battery on the Circuit	63
Figure 37	External AC-DC Adaptor	63
Figure 38	Personal Electronic Medicine Organizer	64
Figure 39	Personal Electronic Medicine Organizer (SV)	64
Figure 40	PIC Microcontroller Schematic Diagram	65
Figure 41	Power Supply Schematic Diagram	67
Figure 42	Circuit Simulation	68
Figure 43	Prototype without Label	77
Figure 44	Prototype with Label	77