EFFECTS OF IONIZED AIR TREATED WATER ON THE MORPHOMETRICS OF *Tilapia nilotica* (NILE TILAPIA)

An Undergraduate
Thesis Presented to
The Faculty of the Biological Sciences Department
College of Science
De La Salle University – Dasmariñas
Dasmariñas, Cavite

In Partial Fulfillment of the Requirements for the Degree of Bachelor of Science Major in Human Biology

CARLO MIGUEL G. MATANGUIHAN NIBMOR EVAN P. CABANGON

March 2007

Abstract

Tilapia nilotica is one of the most abundant and common fish that plays a part in an ordinary Filipino diet. The decrease of the time it takes for a fish farmer to cultivate them in order to increase the yield of production and reduction of its price rate in the market is the major objective of this study. This was done through water ionization treatment. Results showed that the water treated with ionizer induced a significant difference on the growth rate specifically on total body length ($T\sim-114.18 \ge 0.05$), standard body length ($T\sim-114.18 \ge 0.05$), $112.79 \ge 0.05$), head length (T~-110.75 \ge 0.05), head width (T~-108.26 \ge 1.05) 0.05) and body weight (T \sim -121.27 \geq 0.05) indicating that the growth for the organisms in the experimental setup was faster compared to the organism in the control setup. Physicochemical parameters such as pH, DO and nitrate were monitored in the study. Results showed that water treated with ionizer had a significant difference for pH ($T\sim65535 \ge 0.05$) and DO ($T\sim-9.89 \ge 0.05$). No significant difference was accounted for nitrates ($T \sim 0 \ge 0.05$). The pH became acidic while DO concentration increased indicating that the amount of oxygen increased. Statistically, ionization is efficient in yielding marketable sized fishes in a short amount of time. Performing this study on a larger scale is advisable to determine whether the method is also efficient in the usual breeding area.

TABLE OF CONTENTS

Title page	1
Abstract	2
Approval sheet	3
Acknowledgement	4
Table of Contents	5
CHAPTER 1 INTRODUCTION	
1.1 Background of the Study	9
1.2 Conceptual Framework	10
1.3 Statement of the Problem	11
1.4 Hypothesis	11
1.5 Scope and Limitations	12
1.6 Significance of the Study	13
1.7 Definition of Terms	13
CHAPTER 2 LITERATURE REVIEW	
2.1 Conceptual Literature	15
2.2 Related Studies	20
CHAPTER 3 METHODOLOGY	
3.1 Research Design	23

3.2 Research Setting	23
3.3 Research Procedure	24
3.4 Data Gathering and Statistical Analysis	25
CHAPTER 4 RESULTS AND DISCUSSION	
4.1 Results	27
4.2 Discussion	34
CHAPTER 5 SUMMARY AND CONCLUSION	
5.1 Summary of Findings	38
5.2 Conclusion	38
5.3 Recommendation	39
Cited References	40
Appendices	
Tables	47
Plates	54
Curriculum Vitae	60

LIST OF TABLES

Table 4.1 Summary of Morphometrics of T. nilotica in untreated and ionized-treated water

28

LIST OF FIGURES

Figure 4.1 Average Growth of <i>T. nilotica</i> per Aquarium in Terms of Total Body Length (cm) for Eight Weeks	27
Figure 4.2 Average Growth of <i>T. nilotica</i> per Aquarium in Terms of Standard Length (cm) for Eight Weeks	29
Figure 4.3 Average Growth of <i>T. nilotica</i> per Aquarium in Terms of Head Length (cm) for Eight Weeks	30
Figure 4.4 Average Growth of <i>T. nilotica</i> per Aquarium in Terms of Head Width (cm) for Eight Weeks	30
Figure 4.5 Average Weight (grams) Growth of <i>T. nilotica</i> for Eight Weeks	31
Figure 4.6 Amount of Dissolved Oxygen (mg/L) after Eight weeks	32
Figure 4.7 Water pH (Potential Hydrogen) after Eight weeks	33
Figure 4.8 Nitrates Content (ppm) after Eight weeks	33