A COMPARATIVE STUDY ON THE EFFECTS OF MALATHION AND Caesalpinia pulcherrima L (CABALLERO) LEAF EXTRACT ON THE GROWTH, LEAF DEVELOPMENT AND BIOMASS OF Lycopersicon esculentum L. (TOMATO)

An Undergraduate Thesis Presented to the Faculty of the Biological Sciences Department College of Science De La Salle University – Dasmariñas Dasmariñas, Cavite

In Partial Fulfillment of the Requirements for the Degree of Bachelor of Science Major in Human Biology

KAREN GAILE P. PEÑERA ANTONETTE R. PESEBRE

March 2007

ABSTRACT

The study was conducted to compare the plant growth of Lycopersicon esculentum (tomato) using different concentrations of malathion and Caesalpinia pulcherrima (caballero) leaf extract. The comparative test was done by spraying of different concentrations of malathion and caballero leaf extract externally to one hundred forty four tomato plants. The application was done during the eighth week until twelfth week to ensure that the plants can tolerate the effects of such insecticides. The findings showed that both malathion and caballero leaf extract had effects on the growth of tomato, though plants treated with the latter gave only satisfactory results. During the first application of insecticides, leaf curling was observed mostly in plants treated with varying concentrations of malathion and leaf spots were observed mostly in plants treated with varying concentrations of caballero extract. The different concentrations of malathion and caballero leaf extract had effects on the growth, leaf development and biomass of tomato. Using malathion, T₂M obtained the highest height (118.40 cm), number of leaves (81.94) and biomass (23.4 g) of tomato plants compared to the height of T₂E (107.63 cm), number of leaves (81.58) and biomass (10.8 g) of tomato plants treated with caballero leaf extract. In terms of leaf development, 57.3% of the plants from T₂M had the highest incidence of leaf curling compared to 55.2% of plants from T₂E. The results concluded that the minimal concentration of malathion and caballero leaf extract enhances growth and development of tomato plants, and an increase in concentration can be toxic to plants. Based on statistical analysis, plants treated with malathion and caballero leaf extract exhibited equal averages in terms of height and number of leaves.

TABLE OF CONTENTS

Title Page	1
Approval Sheet	2
Abstract	3
Acknowledgement	4
Table of Contents	5
List of Tables	7
List of Figures	8
CHAPTER 1 INTRODUCTION	
1.1 Background of the Study	9
1.2 Conceptual Framework	12
1.3 Statement of the Problem	12
1.4 Hypotheses	13
1.5 Scope and Limitations	14
1.6 Significance of the Study	15
1.7 Definition of Terms	15
CHAPTER 2 LITERATURE REVIEW	
2.1 Conceptual Literature	17
2.2 Related Studies	22

CHAPTER 3 METHODOLOGY

3.1 Research Design	30
3.2 Research Setting	30
3.3 Research Procedure	31
3.4 Data Gathering and Statistical Analysis	32
CHAPTER 4 RESULTS AND DISCUSSION	
4.1 Results	35
4.2 Discussion	38
CHAPTER 5 SUMMARY, CONCLUSION, AND RECOMMENDATION	NS
5.1 Summary	49
5.2 Conclusion	50
5.3 Recommendations	51
Cited References	53
Appendices	
A. Standard Procedure	61
B. Raw Data	63
C. Figures	71
D. Photodocumentation	75
E. Curriculum vitae	87

LIST OF TABLES

Table 4.1 Initial, final and average height of tomato plants	35
Table 4.2 Average number of leaves of tomato plants	36
Table 4.3 Fresh, dried, ashed weights of tomato and biomass	37
Table 7.1 Raw data of plant height	63
Table 7.2 Raw data of number of leaves	64
Table 7.3a Raw data of tomato plants with curled leaves	65
Table 7.3b Raw data of tomato plants with leaf spots	66
Table 7.4 Anova table for plant height of tomato plants	67
Table 7.5 Anova table for number of leaves of tomato plants	68
Table 7.6 Anova table for the biomass of tomato	69
Table 7.7 Tukey table for the biomass of tomato	70

7

LIST OF FIGURES

Figure 7.1 Height of tomato plants	71
Figure 7.2 Number of leaves of tomato plants	72
Figure 7.3 Tomato plants affected with curled leaves	73
Figure 7.4 Biomass of tomato plants	74

