DETECTION AND QUANTIFICATION OF MICROPLASTICS
INGESTED BY FISHES IN THE ESTUARY OF ZAPOTE
GOING TO MANILA BAY

An Undergraduate Thesis Presented to
The Faculty of Biological Sciences Department
College of Science and Computer Studies
De La Salle University - Dasmariñas
City of Dasmariñas, Cavite

In Partial Fulfilment of the Requirements for the degree
Bachelor of Science in Biology Major in Human Biology

ANGELICA MARIELLE M. PARAS
SAMANTHA DANIZ C. VALERIO
May 2018
ABSTRACT

Microplastics are described as any plastic with a diameter less than five millimeters. Microplastic debris is a prevalent pollutant present in aquatic systems over the globe. A scope of aquatic organisms has the ability to ingest microplastics, resulting to adverse health effects. This study detected and quantified the presence of microplastics in the estuary of Zapote River going to Manila Bay. Water and fish samples were collected from three stations namely Sineguelasan in Bacoor, mouth of Zapote River and Manila Bay. Fish samples were subjected to gastrointestinal tract extraction; thus observed under a dissecting microscope. Low occurrences of microplastics were observed in both water and fish samples. A total of twenty six microplastics in water and thirty two microplastics in fish samples were detected. Manila Bay was most prevalent in microplastic contamination. It was proven that its surrounding environment is the primary source of contamination due to the presence of single-sachet packs. Furthermore, two-fish species were identified namely, Oreochromis niloticus and Anodontostoma chacunda. Oreochromis niloticus had more microplastics ingested compared to Anodontostoma chacunda. Feeding habits of these fish species can be attributed to the ingestion of microplastics. As a result, it is an emerging environmental concern due to the ability of microplastics to affect the trophic level of transfer through bioaccumulation and biomagnification.

Keywords: Oreochromis niloticus, Anodontostoma chacunda, microplastics
TABLE OF CONTENTS

Title Page 1
Abstract 2
Approval Sheet 3
Acknowledgements 4
Table of Contents 5
List of Tables 7
List of Figures 8
List of Plates 9

CHAPTER 1 INTRODUCTION
 1.1 Background of the Study 10
 1.2 Conceptual Framework 13
 1.3 Objectives of the Study 13
 1.4 Scope and Limitations 14
 1.5 Significance of the Study 14
 1.6 Definition of Terms 16

CHAPTER 2 LITERATURE REVIEW
 2.1 Conceptual Literature 18
 2.2 Related Studies 23

CHAPTER 3 METHODOLOGY
 3.1 Research Design 26
3.2 Research Setting

26

3.3 Research Procedure

27

3.4 Data Gathering and Statistical Analysis

29

CHAPTER 4 RESULTS AND DISCUSSION

4.1 Results

31

4.2 Discussion

34

CHAPTER 5 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

5.1 Summary

37

5.2 Conclusions

38

5.3 Recommendations

39

Cited References

40

Appendices

A. Map of Study Site

46

B. Standard Procedure

47

C. Raw Data and Statistical Analysis

50

D. Photodocumentation

52

E. Curriculum Vitae

63
LIST OF TABLE

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Mean of Percent Occurrence and Percent Microplastics Accumulated in the Water Samples Collected in the Assigned Sampling Locations along the Estuary of Zapote River Going to Manila Bay</td>
<td>31</td>
</tr>
<tr>
<td>2. Species, Mean of Percent Occurrence and Percent Microplastics Accumulated in the Fish Samples Collected in the Assigned Sampling Locations Along the Estuary of Zapote River Going to Manila Bay</td>
<td>32</td>
</tr>
<tr>
<td>3. Number of Microplastics Present in the Water Samples Collected in the Estuary of Zapote River Going to Manila Bay</td>
<td>50</td>
</tr>
<tr>
<td>4. One-way ANOVA of Microplastics Present in the Water Samples Collected in the Estuary of Zapote River Going to Manila Bay</td>
<td>50</td>
</tr>
<tr>
<td>5. Number of Affected Fish Samples, Percent Occurrence, Number of Microplastics and Percent Microplastics Present</td>
<td>51</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Paradigm of the Study</td>
<td>13</td>
</tr>
<tr>
<td>2. Fish Species Affected of Microplastic Ingestion</td>
<td>34</td>
</tr>
</tbody>
</table>
LIST OF PLATES

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Satellite Map of the Estuary of Zapote River Going to Manila Bay</td>
<td>46</td>
</tr>
<tr>
<td>2.</td>
<td>Oreochromis niloticus</td>
<td>52</td>
</tr>
<tr>
<td>3.</td>
<td>Anodontostoma chacunda</td>
<td>54</td>
</tr>
<tr>
<td>4.</td>
<td>Station 1 (Sineguelasan in Bacoor, Cavite)</td>
<td>55</td>
</tr>
<tr>
<td>5.</td>
<td>Station 2 (Mouth of Zapote River)</td>
<td>55</td>
</tr>
<tr>
<td>6.</td>
<td>Station 3 (Manila Bay)</td>
<td>56</td>
</tr>
<tr>
<td>7.</td>
<td>Preparation of Improvised Mesh Conical Net</td>
<td>56</td>
</tr>
<tr>
<td>8.</td>
<td>Measuring pH Level and Dissolved Oxygen of Water Samples</td>
<td>57</td>
</tr>
<tr>
<td>9.</td>
<td>Sieving of Water Samples</td>
<td>57</td>
</tr>
<tr>
<td>10.</td>
<td>Applying Hot Needle Test for Suspected Plastic Particles</td>
<td>58</td>
</tr>
<tr>
<td>11.</td>
<td>Classification of Suspended Solid Particles Collected in Manila Bay</td>
<td>58</td>
</tr>
<tr>
<td>12.</td>
<td>Classification of Suspended Solid Particles Collected in Sineguelasan</td>
<td>59</td>
</tr>
<tr>
<td>13.</td>
<td>Classification of Suspended Solid Particles Collected in Zapote River</td>
<td>60</td>
</tr>
<tr>
<td>14.</td>
<td>Collection of Fish Samples</td>
<td>61</td>
</tr>
<tr>
<td>15.</td>
<td>Examination of Gastrointestinal Tracts Using Dissecting Microscope</td>
<td>62</td>
</tr>
<tr>
<td>16.</td>
<td>Microplastics Observed Under the Dissecting Microscope</td>
<td>62</td>
</tr>
</tbody>
</table>