

EFFECT OF Broussonetia luzonicus (HIMBABAO) LEAF EXTRACT ON BLOOD URIC ACID LEVEL OF POTASSIUM OXONATE-INDUCED HYPERURICEMIA IN Rattus norvegicus (ALBINO RATS)

A Research Presented to the Biological Sciences Department College of Science and Computer Studies De La Salle University-Dasmariñas City of Dasmariñas, Cavite

In Partial Fulfilment of the Requirements for the Degree Bachelor of Science in Biology Major in Human Biology

DRANREB JUER EVARDO KOLLEEN H. JORVINA

May 2018

TABLE OF CONTENTS

Title Page		1
Table of Cont	ents	2
Abstract		4
Acknowledge	ments	5
CHAPTER 1	INTRODUCTION	
1.1	Background of the Study	6
1.2	Conceptual Framework	8
1.3	Statement of the Problem	8
1.4	Hypotheses	9
1.4	Scope and Limitations	9
1.6	Significance of the Study	10
1.7	Definition of Terms	11
CHAPTER 2	LITERATURE REVIEW	
2.1	Conceptual Literature	12
2.2	Related Studies	15
CHAPTER 3	METHODOLOGY	
3.1	Research Design	21
3.2	Research Setting (if necessary)	21
3.3	Research Procedure	22
3.4	Data Gathering and Statistical Analysis	25

CHAPTER 4 RESULTS AND DISCUSSION				
4.1 Results	26			
4.2 Discussion	27			
CHAPTER 5 CONCLUSION AND RECOMMENDATIONS				
5.1 Conclusion	29			
5.2 Recommendations	29			
Cited References				
Appendices				
A. Taxonomic Profile of <i>Broussonetia luzonicus</i>	36			
B. Standard Procedure	38			
C. Raw Data and Statistical Analysis	40			
D. Photodocumentation	43			
E. Certifications	46			
F. Curriculum Vitae	52			

3

ABSTRACT

The study aims to find the reduction potential of *Broussonetia luzonicus* leaf extract on Potassium Oxonate-induced hyperuricemia albino rats and determine if there are significant differences on different concentrations used in the study. The study started with the test subjects pre-induction for one week and induced with 0.2 mL Potassium Oxonate with distilled water once. The test subjects' blood uric acid levels will be measured three times: pre-induction, induction period, and post-induction. Once the test subjects were induced, they will be treated for one week using the leaf extract. Among the four test groups, the fourth test group (9.30 mg/dL) had the highest reducing potential of hyperuricemia followed by the third test group (6.63 mg/dL) then the positive control (2.13 mg/dL) and lastly the second test group (0.53 mg/dL). All test groups have shown a reducing potential and this is attributed by the phytochemicals of the plant namely: flavonoids, phenolic compounds and alkaloids, phytosterols, and squalene, which are all said to be xanthase oxidase inhibitors and anti-oxidants.

Keywords: Broussonetia luzonicus, hyperuricemia, Potassium Oxonate, uric acid