

A COMPARATIVE STUDY ON THE ANGIOGENIC EFFECT OF THE **CRUDE SHOOT EXTRACT OF** Artemesia dracunculus L. (TARRAGON) AND Nepeta cataria L. (CATNIP) ON THE CHORIOALLANTOIC MEMBRANE OF A 10 DAY-OLD CHICK EMBRYO

An Undergraduate Research Presented to the

Faculty of the Biological Sciences Department

College of Science

De La Salle University - Dasmariñas

Dasmariñas, Cavite

In Partial Fulfillment of the Requirements

for the Degree of Bachelor of Science Major in Human Biology

FIJIE ANN A. GOPEZ

KENT AVIAR F. MADRID

March 2012

ABSTRACT

Angiogenesis is a medical technique used to determine the effect of various plant extracts in the growth of new blood vessels from pre-existing ones. It is used as a pre-test for the foundation of novel drugs that could treat numerous diseases such as cancer and diabetes. In this study, two plant samples were used to test their angiogenic capacity and compare their effects on the chorioallantoic membrane of a 10 day-old chick embryo. 200 grams of the samples, A. dracunculus (tarragon) and N. cataria (catnip) were soaked in 75% ethanol while the extracts were collected using the rotary evaporator. Increasing concentrations of each extract were made (75 ppt, 150 ppt and 300 ppt) and administered onto the chorioallantoic membrane (CAM) of a 10 day old chick embryo. After 48 hours, the CAM of each test egg was harvested and the collaterals were then counted and compared. The results were compared to the control group and it showed that both plants were able to inhibit angiogenesis due to the drastic decrease in the collaterals of the test eggs. Finally, based on the statistical analysis, it was found that N. cataria is a much more favorable angiogenic inhibitor than A. dracunculus due to its inhibitory capacity brought about by its specific chemical component not found in A. dracunculus.

TABLE OF CONTENTS

Title Page	1
Approval Sheet	2
Acknowledgments	3
Abstract	4
Table of Contents	5
CHAPTER 1 INTRODUCTION	
1.1 Background of the Study	09
1.2 Conceptual Framework	11
1.3 Statement of the Problem	11
1.4 Hypotheses	12
1.5 Scope and Limitations	12
1.6 Significance of the Study	13
1.7 Definition of Terms	14
CHAPTER 2 LITERATURE REVIEW	
2.1 Conceptual Literature	16
2.2 Related Studies	23
CHAPTER 3 METHODOLOGY	
3.1 Research Design	29
3.2 Research Setting	29
3.3 Research Procedure	30

3.4 Data Gathering and Statistical Analysis	32
CHAPTER 4 RESULTS AND DISCUSSION	
4.1 Results	34
4.2 Discussion	36
CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS	
5.1 Conclusions	42
5.2 Recommendations	43
Cited References	44
Appendices	
A. Standard Procedure	48
B. Statistical Analysis	50
C. Plant Samples	52
D. Photo Documentation	56
Curriculum Vitae	60

6

LIST OF TABLES

CHAPTER 4: RESULTS	
Table 4.1 Average Number of Collaterals from treatment	
of Tarragon and Catnip	35
APPENDIX B	
Table 1. Raw Data	50
Table 2. Two-Way ANOVA	50
Table 3. Scheffe Test for 75 ppt Concentration	51
Table 4. Scheffe Test for 150 ppt Concentration	51
Table 5. Scheffe Test for 300 ppt Concentration	51
Table 6. Scheffe Test for Tarragon	51
Table 7. Scheffe Test for Catnip	51

7

LIST OF PLATES

APPENDIX D	
Plate 1. The shoot extraction of tarragon and catnip	56
Plate 2. The preparation of concentrations of each plant species	56
Plate 3. The administration of crude shoot extracts	
on a 10-day old chick embryos	57
Plate 4. The harvesting and the observation of the chorioallantoic	
membrane (CAM) of a 10-day old chick embryo	57
Plate 5. The chorioallantoic membrane (CAM) of 10-day old	
chick embryo administered with tarragon extract.	58
Plate 6. The chorioallantoic membrane (CAM) of 10-day old	
chick embryo administered with catnip extract.	59