

### De La Salle University – Dasmariñas GRADUATE PROGRAM

# ASSESSMENT OF SOIL AND SELECTED ECONOMICALLY IMPORTANT PLANTS FOR HEAVY METAL CONTAMINATION FOUND IN CARMONA LANDFILL, CARMONA, CAVITE

A Research Paper Presented to The College of Science Graduate Studies De La Salle University – Dasmariñas City of Dasmariñas, Cavite

In Partial Fulfilment of the Requirements for the degree of Master of Science in Biology

JOSEPH P. BENDO

October 2012

Page 1 of 92

De La Salle University – Dasmariñas GRADUATE PROGRAM

#### ABSTRACT

The research aimed to analyze the physico-chemical composition, determine heavy metal (Cu, Zn, Cd and Pb) contamination of the soil and selected economically important plant species in the area, and examine the phytoremediation potential of the selected plants. The site was used as a dumping site for the waste of Metro Manila and was ordered for closure in 1998. Soil from the upper and lower landfill was sampled and analyzed using Atomic Absorption Spectrophotometer, and compared against a soil sample from a residential area. Likewise, plant samples were also sampled, analyzed and compared from the three sites. Plants sampled were Lantana camara, Synedrella nodiflora and Panicum maximum. Soil sample texture range from loam, sandy loam to clay with a slightly acidic to near neutral pH. P content, and organic matter is lesser from the landfill soil sample. Concentration of heavy metal from the upper (Cu 0.1760 mg/kg, Zn 23.0188 mg/kg, Cd 0.0359 mg/kg, Pb 0.6177 mg/kg) and lower landfill (Cu 0.2719 mg/kg, Zn 21.0544 mg/kg, Cd 0.0446 mg/kg, Pb 0.6343 mg/kg) is slightly higher from the metal concentration from the residential area, however, still within the permissible amount for the soil. It can be noted that pH, organic matter, and soil texture influence the absorption and retention of the metals in the soil, thereby influencing the amount that is present from the tested plant tissues. Accumulation of heavy metals in plant tissues varies among the species of plant tested; however, accumulation is noted to be highest in leaves. L. camara, S. and P. maximum show promising potential in the nodiflora phytoremediation of Zn. S. nodiflora and P.maximum for Pb and S. nodiflora for Cd.



# De La Salle University – Dasmariñas GRADUATE PROGRAM

#### TABLE OF CONTENTS

| TITLE PAGE                        | 1  |
|-----------------------------------|----|
| ABSTRACT                          | 2  |
| APPROVAL SHEET                    | 3  |
| ACKNOWLEDGMENT                    | 4  |
| TABLE OF CONTENTS                 | 7  |
| LIST OF TABLES                    | 10 |
| LIST OF FIGURES                   | 11 |
| CHAPTERS                          |    |
| I. INTRODUCTION                   |    |
| Background of the Study           | 12 |
| Objectives of the Study           | 17 |
| Significance of the Study         | 18 |
| Scope and Limitation of the Study | 19 |
| II. METHODOLOGY                   |    |
| Study Site                        | 20 |
| Material Preparation              | 20 |
| Sample Collection                 |    |
| A. Soil Sample Collection         | 21 |
| B. Plant Sample Collection        | 21 |
| Sample Analysis                   |    |
| A. Soil Sample Analysis           |    |
| A.1. Physico-chemical Analysis    | 22 |
|                                   |    |

Page 7 of 92

## De La Salle University – Dasmariñas GRADUATE PROGRAM

| A.2. Metal Concentration Analysis                   | 22           |
|-----------------------------------------------------|--------------|
| B. Plant Sample Analysis                            | 23           |
| Plant Documentation                                 | 23           |
| Phytoremediation Potential Determination            | 24           |
| Data Gathering and Statistical Analysis             | 25           |
| III. RESULTS AND DISCUSSION                         |              |
| Physico-chemical Analysis of Soil Samples           | 26           |
| Heavy Metal Concentration in Soil Samples           | 27           |
| Heavy Metal Contents in Collected Plant Samples     | 31           |
| Bioconcentration Factor                             | 42           |
| IV. CONCLUSIONS, RECOMMENDATIONS                    |              |
| Conclusion                                          | 47           |
| Recommendations                                     | 48           |
| CITED REFERENCES                                    | 50           |
| APPENDICES                                          | 57           |
| A. Physico-chemical Analysis of the Soil Procedures |              |
| Soil pH Determination                               | 57           |
| Organic Matter Content                              | 58           |
| Textural Grade                                      | 58           |
| B. Map of the Study Site                            | 61           |
| C. Botanical Description                            |              |
| C.1 Lantana camara                                  | 62           |
| C.2 Synedrella nodiflora                            | 63           |
| C.3 Panicum maximum                                 | 64           |
|                                                     | Page 8 of 92 |



## De La Salle University – Dasmariñas GRADUATE PROGRAM

#### LIST OF TABLES

| TITLE                                                                                                                                                                 | PAGE |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| <ol> <li>Physico-chemical Properties of the Soil Collected from<br/>Collection Sites.</li> </ol>                                                                      | 26   |
| <ol> <li>Mean Concentration of Heavy Metal from Landfill and<br/>Residential Soil Sample.</li> </ol>                                                                  | 27   |
| 3. Mean and Total Concentration Cu and Zn from Root,<br>Stem and Leaves from <i>L. camara</i> Collected from<br>Residential, Upper and Lower Landfill.                | 32   |
| 4. Mean and Total Concentration Cd and Pb from Root,<br>Stem and Leaves from <i>L. camara</i> Collected from<br>Residential, Upper and Lower Landfill.                | 34   |
| 5. Mean and Total Concentration Cu and Zn from Root,<br>Stem and Leaves from <i>S. nodiflora</i> Collected from<br>Residential, Upper and Lower Landfill.             | 35   |
| <ol> <li>Mean and Total Concentration Cd and Pb from Root,<br/>Stem and Leaves from S. nodiflora Collected from<br/>Residential, Upper and Lower Landfill.</li> </ol> | 37   |
| <ol> <li>Mean and Total Concentration Cu and Zn from Root and<br/>Leaves from <i>P. maximum</i> Collected from Residential,<br/>Upper and Lower Landfill.</li> </ol>  | 35   |
| <ol> <li>Mean and Total Concentration Cd and Pb from Root and<br/>Leaves from <i>P. maximum</i> Collected from Residential,<br/>Upper and Lower Landfill.</li> </ol>  | 36   |
|                                                                                                                                                                       |      |
|                                                                                                                                                                       |      |

## De La Salle University – Dasmariñas GRADUATE PROGRAM

