DETERMINATION OF THE MICROBIAL POPULATION AND CHEMICAL CHANGES IN VINEGAR PRODUCTION OF *Arenga pinnata* Merr. (KAONG) SAP

A Special Problem Presented to
The College of Science Graduate Studies
De La Salle University – Dasmariñas
City of Dasmariñas, Cavite

In Partial Fulfilment of the Requirements
for the degree of Master in Biology

MICHELE T. BONO

July 2012
ABSTRACT

The study determined the microbial population and chemical changes of Arenga pinnata sweet sap from the time it is tapped until it is fermented to vinegar. It also correlated the effects of sugar content, pH and titratable acidity on microbial population. *A. pinnata* sap was collected from Indang, Cavite. Set-ups were done in the laboratory and in the farm as the producer’s set up. Results showed that during the initial stage of fermentation the *A. pinnata* sap is dominated by yeasts and bacteria, but as fermentation continues the population decreases, and is replaced by the acetic acid bacteria. The growth of yeasts decreased on the depletion of sugar and an increase in the level of titratable acidity. On the other hand, acetic acid bacteria started to grow when sugar has been depleted and titratable acidity has increased, which was observed at day 14. The population of bacteria showed fluctuations, but were observed mostly during the initial stage of fermentation and began to decrease on the same day that titratable acidity and acetic acid bacteria population is at its peak. The mean final titratable acidity is 5.72%. The acidity of the medium inhibited the growth of the bacteria. However, changes on pH levels during the fermentation period of *A. pinnata*, had negligible relation on the growth of yeast, bacteria and acetic acid. Chemical parameters, such as sugar, pH, and titratable acidity do not differ on the three fermentation set-ups, thus producing vinegar. However, these chemical parameters are significantly affected by the days of fermentation. Sugar and pH decreases during vinegar production of *A. pinnata* sap, while the titratable acidity increases as fermentation continues.
ACKNOWLEDGMENTS

The researcher would like to express her sincerest gratitude to the following individuals who made this research possible:

To Dr. Johnny A. Ching, the author’s adviser, for untiringly giving her suggestions and comments on her paper, for checking the statistical aspects of her research, for being approachable and understanding.

To her evaluators, Dr. Cristina Salibay and Dr. Rubie Causaren for their comments and suggestions for the improvement of her paper.

To Dr. Edna Mercado, the COSGS Director, for her assistance and encouragements.

To her husband, Papa Peng, for understanding the times that the author was so busy and could not work in the house and for the sleepless nights; for his all-the-way support, and most especially for loving the author and giving her inspiration to finish her research.

To the author’s kids, Trix, Bea, and Enzo for being in charge on the kitchen every week ends and for sleeping with the author in the sala when she needs to stay up late to write her paper. They are the author’s source of joy and inspiration.

To her bespren, partner, colleague, and critique Dickson, who kept on reminding her to finish her research, for checking on her research progress every week, his encouragement, love, support, happiness, and for keeping the friendship.
To her everdearest friendship/ student/ classmate/ sister Sherine, who was always there to support, cheer her up, encourage, send text messages and never got tired of listening to the author’s stories, and for the greatest friendship.

To the author’s superfriends, Maricel, Jam, Moffy, She, and Partner for all the support, encouragement, love, naughty and happy conversations, for sharing with the author’s unwinding moments and Starbucks’ buddies.

To the ever-supportive Mam Epog, for her motherly advice and love; to Dr. Nene, who helped with the statistical analysis and for generously mentoring; to Mam Zeny, for being so supportive; to Mam Rose, Mam Yoly, Mam Lily, Mam Belen and Bayosay pipol for all the good times and companionship.

To Dr. Irineo Dogma, for his fatherly advice, encouragements, and constructive criticisms. To Mam Heleng Ordonez, who never failed to remind her to finish her Masteral degree, and for her motherly advice.

To Mel, Joyce, Lynn, Mam Luth, Mam Fe, Mam Leny, and Sir Junn for all the encouragements and support.

And above all, to God, the source of the author’s strength, guidance and wisdom.

To all of you, this piece of work is lovingly dedicated.
TABLE OF CONTENTS

- TITL E PAGE ... 1
- ABSTRACT .. 2
- APPROVAL SHEET ... 3
- ACKNOWLEDGMENT .. 4
- TABLE OF CONTENTS .. 6
- LIST OF TABLES .. 8
- LIST OF FIGURES .. 9

CHAPTERS

I. **INTRODUCTION**

 Background of the Study .. 11
 Objectives of the Study .. 14
 Scope and Limitations ... 15
 Significance of the Study .. 15

II. **METHODOLOGY**

 Collection and Preparation of *Arenga pinnata* sap 18
 Monitoring of Fermentation .. 19

III. **RESULTS AND DISCUSSIONS**

 Microbial Population of *Arenga pinnata* sap 21
 Chemical Changes during Fermentation of *A. pinnata* 27
Relationship of Sugar, pH, and Titratable Acidity with Microbial Growth

IV. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Major findings 45
Conclusions 47
Recommendations 49

CITED REFERENCES 50

APPENDICES

A. Figure on Methodology 54
B. Raw Data 55
C. Statistical Analysis 58
D. Sampling Site Map 68
E. Photodocumentation 69
F. Curriculum Vitae 73
LIST OF TABLES

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sugar level and microbial population of Arenga pinnata fermentation</td>
<td>34</td>
</tr>
<tr>
<td>2. pH level and microbial population of Arenga pinnata fermentation</td>
<td>38</td>
</tr>
<tr>
<td>3. Titratable acidity level and microbial population of Arenga pinnata fermentation</td>
<td>41</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Yeast population of Arenga pinnata sap at different fermentation set-ups</td>
<td>21</td>
</tr>
<tr>
<td>2. Bacterial population of Arenga pinnata sap at different fermentation set-ups</td>
<td>23</td>
</tr>
<tr>
<td>3. Acetic acid bacteria population of Arenga pinnata sap At different fermentation set-ups</td>
<td>26</td>
</tr>
<tr>
<td>4. Changes in sugar level of fermenting Arenga pinnata per type of experimental set-up</td>
<td>28</td>
</tr>
<tr>
<td>5. Changes in pH level of fermenting Arenga pinnata per type of experimental set-up</td>
<td>31</td>
</tr>
<tr>
<td>6. Changes in titratable acidity of fermenting Arenga pinnata per type of experimental set-up</td>
<td>33</td>
</tr>
<tr>
<td>7. The trend on population growth of yeast in relation to the level of sugar in fermenting Arenga pinnata</td>
<td>35</td>
</tr>
<tr>
<td>8. The trend on population growth of acetic acid bacteria in relation to the level of sugar in fermenting Arenga pinnata</td>
<td>36</td>
</tr>
<tr>
<td>9. The trend on population growth of bacteria in relation to the level of sugar in fermenting Arenga pinnata</td>
<td>37</td>
</tr>
<tr>
<td>10. The trend on population growth of yeast in relation to the pH level of fermenting Arenga pinnata</td>
<td>39</td>
</tr>
<tr>
<td>11. The trend on population growth of bacteria in relation to the pH level of fermenting Arenga pinnata</td>
<td>40</td>
</tr>
<tr>
<td>12. The trend on population growth of acetic acid bacteria in relation to the pH level of fermenting Arenga pinnata</td>
<td>40</td>
</tr>
</tbody>
</table>
13. The trend on population growth of yeast in relation to the level of titratable acidity of fermenting *Arenga pinnata* 43

14. The trend on population growth of bacteria in relation to the level of titratable acidity of fermenting *Arenga pinnata* 43

15. The trend on population growth of acetic acid bacteria in relation to the level of titratable acidity of fermenting *Arenga pinnata* 44