

A Study in Meeting the 3% Allowable Defect Rate in Producing 1811-8T-36MP (Module) in the Keyrin Electronics Philippines Incorporation from October 2012 to March 2013 Amounting to Php 3,020,200.00

A Practicum Study Presented to the Faculty of the College of Engineering, Architecture and Technology De La Salle University- Dasmariñas Dasmariñas City, Cavite

> In Partial Fulfillment of the Requirements for the Degree of Bachelor of Science in Industrial Engineering

> > Submitted by: CARINGAL, RAYMAR S.

Submitted to: Engr. Ma. Lourdes H. Parcero

May 2013

Table of Contents

Title Page	i
Approval Page	ii
Acknowledgement	iii
Chapter I: Introduction	
Introduction	1
Background of the Study	2
Problem Statement	4
Objectives of the Study	4
Scope and Limitations	4
Significance of the Study	5
Design and Methodology	6
Definition of Terms	7
Chapter II: Related Literature	9
Chapter III: Presentation of Gathered Data	
Summary of Rejects of All Models in KEPI	19
Summary of Rejects 1811-8T-36MP (Module)	20
Cost of Rejects	21
Flow Process Chart	22
Check Sheet for 1811-8T-36MP (Module)	23
Pareto Analysis of 1811-8T-36MP (Module)	24
Summary of the Causes of Defects of 1811-8T-36MP (Module)	25

Fishbone	Diagram

Types of Defects28

Summary of carrier pressing Production Requirement	30
Summary of frequency of Worn-Out carrier pressing	31
Worn Out Carrier Pressing	32
Ineffective tool and slippery	33
Flow process in Final Assembly	35
Problem Tree	36
Objective Tree	39
Chapter IV: Alternative Courses of Action	
ACA #1: Procurement of new carrier pressing with higher	
Specification	42
ACA #2: Procurement of vacuum pencil	47
ACA#3:Additional of protector tape before and after	
lower carrier pressing	52
Cost and Benefit Analysis	56
Chapter V: Conclusion and Recommendation	59
Chapter VI: Detailed Plan of Action	61
Bibliography	65
Appendices	67

27

List of Table and Figures:

Figure 1: Flow Process Chart	22
Figure 2: Pareto Diagram of 1811-8T-36MP (Module)	24
Figure 3: Fish Bone Diagram	27
Figure 4: Worn Out Carrier Pressing	32
Figure 5: Ineffective tool and slippery	33
Figure 6: Ineffective tool and slippery	34
Figures 7: Flow process in Final Assembly	35
Table 1: Summary of Rejects of All Modules in KEPI	19
Table 2: Actual Output vs. Good Output	20
Table 3: Check Sheet for 1811 <mark>-8</mark> T-36MP (Module)	23
Table 4: Pareto Analysis of 1811-8T-36MP (Module)	24
Table 5: Summary of the Causes of Defects	25
Table 6: Types of Defects	28
Table 7: Summary of carrier pressing Production Requirement	30
Table 8: Summary of Frequency of Worn-Out carrier pressing	31
Table 9: Comparative Analysis for Vacuum Pencil	48
Table 10: SWOT Analysis of Vacuum Pencil	49

CHAPTER V

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

Keyrin Electronics Philippines Incorporation experiences an average reject rate of 7.28% of 1811-8T-36MP (Module) which amounted to Php 3,020,220.00 from October 2012 – March 2013. This study constructed problem tree to analyze the cause of all the problems like worn-out carrier pressing, Noncompliance of the operator in working instruction and wrong sequence in attachment of protector tape. In preventing these problems, it would eliminate the problem in the loss of opportunity for the company.

To do this, this study set alternative courses of action, such as: Procurement of new carrier pressing with higher specification, Procurement of vacuum pencil and Re-Sequence the procedure in attaching protector tape. Doing this, the company could eliminate

5.2 Recommendation

It is highly recommended to implement ACA #1 and ACA #2 which is all about procurement of new carrier pressing with higher specification and procurement of vacuum pencil. The recommendation intends to meet the 3.00% allowable reject rate caused by the Quality Control problems. By doing so, the company could become more efficient in its production, thus saving money and

resources. It needs further study and analysis in the different field specifically in the research and development study.

