A Study on Eliminating 19.31% Production Loss of Hall Sensors in Main Assembly Operations at Allegro Microsystems Philippines Incorporated from the months of January to June 2014 amounting Php 18,974,592.00

A Practicum Study presented to the Faculty of

College of Engineering, Architecture and Technology

De La Salle University - Dasmariñas

Dasmariñas City, Cavite

In Partial Fulfilment of the Requirements for the degree of Bachelor of Science in Industrial Engineering

Submitted By:

Cabalquinto, Jamila Cathleen G.

Submitted to:

Engr. Ma. Estrella Natalie B. Pineda

October 2014

ABSTRACT

Every company's strategic goal is to achieve a hundred percent of productivity through optimizing time and eliminating wastages. In relation to the specific matter presented. Allegro Microsystems Philippines Incorporated is experiencing production loss even after establishing a big name for itself, in terms of customer satisfaction and guality of outputs. Through the methods used by the researchers in the line of research and observation, the problem was found rooted on delays due to inefficient methods used by the company and machine factors. The process in assembly had been one is to one in man and machine, which could possibly eliminated and improved through adding additional task, had contributed the highest percentage or the majority of the encountered loss. Though this is true, there are also machine factor like malfunction of the machine that makes it backtracking to inefficient workflow that makes it timelier, also the lack of workers in process, which adds in production loss. Due to these facts, the researcher has focused on making a study on eliminating the 19.31% average production loss in the production of Hall Sensors in Assembly Area, which data is gathered from the past six months of work. And as an answer, the researcher has prepared detailed alternative courses of action - possibilities adding and improving the machines and also the productivity of the works in assembly production to eliminate the loss in the end of the study.

TABLE OF CONTENTS

TITLE PAGE	i
APPROVAL SHEET	ii
ACKNOWLEDGEMENT	iii
ABSTRACT	iv
TABLE OF CONTENTS	v
LIST OF TABLES	vi
LIST OF FIGURES	vii

CHAPTER 1: Introduction		1
1.1 Background of the Study	<u> </u>	2
1.2 Statement of the Problem		4
1.3 Objective of the Study		4
1.3.1 General Objective		4
1.3.2 Specific Objective		4
1.4 Scope and Limitations	m • 0-	5
1.5 Significance of the Study		5
1.6 Methodology of the Study		6
1.7 Definition of Terms		8

CHAPTER 2: Review and Related Literature	10
2.1 Time and Motion Study	10
2.2 Standard Time	14
2.3 Molding Machine	15
2.4 Circuits	16
2.5 Hall Effect Sensor	17
CHAPTER 3: Presentation and Data Analysis	20
Table 3.1 Monthly Output from January – June 2014	20
Figure 3.1 Assembly Operations Process Flow Chart	21
Table 3.2 Summary of Affected Units	22
Table 3.3 Cycle Time per Process in Assembly Area	23
Table 3.4 Affected Units in Bottleneck	24
Table 3.5 Summary of Units Affected in Process	25
Figure 3.2 Flow Chart in Trim and Singulation Process	26
Table 3.6 Time Study	27
Table 3.7 Man-Machine Chart	28
Table 3.8 Summary of Man-Machine Chart	29
Figure 3.3 Mold Process Flow Chart	30
Figure 3.4 Molding Machine	31
Table 3.9 Frequency of Units not produces in Molding	32
Figure 3.5 Existing Maintenance Machine Report	33
Table 3.10 Operator Absenteeism Summary Record	34

Table 3.11 Frequency of Absenteeism of the Operators	35
Table 3.12 Regular Operators in Assembly Area	36
Table 3.13 Summary of Attendance	37
Table 3.14 Attendance Records of Assembly Operators	38
Figure 3.6 Fishbone Diagram	39

CHAPTER 4: Analysis of Data	42
4.1 Problem Tree	42
4.2 Analysis of Problem Tree	43

4.3 Objective Tree	 45
4.4 Analysis of Objective Tree	46

CHAPTER 5: Alternative Courses and Actions	48
ACA1: Additional Machine in Trim and Singulation Process	48
ACA2: Implementation of Monthly Preventive Maintenance	53
ACA3: Temporary Replacement of Absent Regular Operator	58
Cost Benefit Analysis	61

CHAPTER 6: Conclusion and Recommendation	62
Conclusion	62
Recommendation	62

CHAPTER 7: Detailed Plan of Action		63
---	--	----

BIBLIOGRAPHY	67
APPENDICES	70
Appendix A: Endorsement Letter for the OJT	71
Appendix B: Certification of OJT	72
Appendix C: Certification of Proof-reading	73
Appendix D: Proof-reader's Credentials	74
Appendix E: Pictures during OJT	75
Appendix F: Researcher's Profile	76

LIST OF TABLES

Table 3.1 Monthly Output from January to June 2014	20
Table 3.2 Summary of Affected Units	22
Table 3.3 Cycle Time per Process in Assembly Area	23
Table 3.4 Affected Units in Bottleneck (Trim and Singulation Process)	24
Table 3.5 Summary of units affected in process (bottleneck)	25
Table 3.6 Time Study	27
Table 3.7 Man-Machine Chart	28
Table 3.8 Summary of Man-Machine Chart	29
Table 3.9 Frequency of Units not produces in Molding Process	32
Table 3.10 Operator Absenteeism Summary Record for 6 Months	34
Table 3.11 Frequency of Absenteeism of the Operators	35
Table 3.12 Regular Operators in Assembly Area	36
Table 3.13 Summary of Attendance in 6 months	37
Table 3.14 Attendance Records of Assembly Operators	38
Table 5.1 PROPOSE MAN-MACHINE CHART	49
Table 5.2 Additional Machine Summary of Elements (Machine 2)	50
Table 5.3 Summary of Elements and Time	50
Table 5.4 Regular and Contractual Operators in Assembly Area	57
Table 5.5 Contractual Operators	58
Table 5.6 Disciplinary Actions	58
Table 5.7 Cost and Benefit Analysis	61
Table 7.1 Gantt chart	63

LIST OF FIGURES

Figure 3.1 Assembly Operations Process Flow Chart	21
Figure 3.2 Flow Chart in Trim and Singulation Process	26
Figure 3.3 Mold Process Flow Chart	30
Figure 3.4 Molding Machine	31
Figure 3.5 Existing Maintenance Machine Report	33
Figure 3.6 FISHBONE DIAGRAM (CAUSE AND EFFECT DIAGRAM)	39
Figure 4.1 PROBLEM TREE	40
Figure 4.2 OBJECTIVE TREE	43
Figure 5.1 EXISTING ASSEMBLY AREA LAYOUT	47
Figure 5.2 EXISTING TRIM AND SINGULATION LAYOUT (Zoom In)	48
Figure 5.3 PROPOSE TRIM AND SINGULATION LAYOUT (Zoom In)	48
Figure 5.4 Existing Checklist of Maintenance Report	52
Figure 5.5 Existing Preventive Maintenance Form	53
Figure 5.6 Proposed Checklist of Maintenance Report	54
Figure 5.7 Proposed Preventive Maintenance Form (Monthly Basis)	55