

DE LA SALLE UNIVERSITY DASMARINAS COLLEGE OF ENGINEERING, ARCHITECTURE AND TECHNOLOGY

DEVELOPMENT OF THREE PROCESS CORN MILL

(DE-HUSKING, DE-KERNELLING, MILLING)

A Thesis

Presented to the Faculty of the Mechanical Engineering Department, College of Engineering, Architecture and Technology De La Salle University – Dasmariñas Dasmariñas City, Cavite

In Partial Fulfilment of the Requirements for the ME Research Project 1 (MEET514f)

Submitted by:

EOBII ARRE D. AUSTRIA RAMON RAPHAEL G. MOJICA MICHAEL GABRIEL RAPHAEL B. VIDAL

APRIL 2014

De La Salle University - Dasmariñas

ABSTRACT

AUSTRIA, E.A., MOJICA, R.R. and VIDAL, M.G.R., Development of Three Process Corn Mill (De-husking, De-kernelling, Milling). Bachelor of Science in Mechanical Engineering, De La Salle University – Dasmariñas, Cavite, April 2014. Adviser: Engr. Alfredo G. Hicaro

This study is conducted in order to design, create and test machines that will be capable of de-husking and de-kernelling and milling yellow dent corns. The corns were sourced from Leyte and sun dried until the moisture content of the corn is reduced. Due to time constraint, the researchers were not able to design an integrated machine to de-husk, de-kernel and mill the corn instead opt to design individual machines. For the de-kerneller unit, the group opted to use the de-kerneller unit designed and built by a group of previous mechanical engineering students.

Through various consultations and research about corn processing, the proponents of the study was able to design a roller that should peel off the husks for the dried corns. However, as the test was conducted, it was found out that the design of the roller was not effective for removing the husks completely. Different rotation patterns for the de-husker rollers were tested.

The effectiveness was increased slightly however the husks still did not completely peel off; the highest being at 21%. The effectiveness of the existing corn de-kerneller was also tested. It turned out that only an average of 90% of the corn kernels were removed from the cob. Corn milling machine was also tested. Test

showed that the corn grits produced was of size 14 based on the corn grit standards set by Bureau of Product Standards.

v

TABLE OF CONTENTS

APPROVAL SHEET		
ACKNOWLEDGEMENT		
ABSTRACT iv		
TABLE OF CONTENTS vi		
LIST OF TABLES		
LIST OF FIGURES ix		
LIST OF APPENDICESx		
BACKGROUND OF THE STUDY		
Introduction 1		
Statement of the Problem		
General Objective		
Specific Objectives		
Significance of the Study		
Theoretical Framework		
Scope and Limitations		
Definition of Terms		
REVIEW OF RELATED LITERATURE AND		
STUDIES		
Corn as Feedstuff for Livestock		
Corn De-husking		
Corn De-kernelling		

De La Salle University - Dasmariñas

Corn Milling	9
Effect of moisture Content in Processing	10
Measuring Moisture Content	12
METHODOLOGY	15
Method of Research	15
Development of Prototype	15
	16
	17
Design of the Prototype	17
Method of Testing	18
RESULTS AND DISCUSSIONS	
	22
Design of the Machines	23
Corn De – husker Machine	25
Corn De-kernelling	
Corn De-kernelling Machine	26
	27
CONCLUSIONS AND RECOMMENDATIONS	
REFERENCES	34
APPENDICES	

LIST OF TABLES

Table		Page
1	Percentage size composition of corn grits	. 21
2	Moisture content of corns	22
3	Diameter and length of sample corns	23
4	Test results on de-husker machine	25
5	Test results on de-kernelling machine	27
6	Weight percentage of grits passed through the mesh	. 28

LIST OF FIGURES

Figure		Page
1	Paradigm of Corn Milling	. 3
2	Corn De-husking Machine	7
3	Hand-crank operated corn de-kerneller by Denison	9
4	Hand-crank stone Grain Mill	
5	Research Flow Chart	16
6	Corns after testing for inward rotation	. 26
7	Corns after testing for similar direction of rotation	26
8	Corns after testing for free-wheeling + inward rotation	26
9	Corns before de-kernelling process	28
10	Corns after first pass in the de-kerneller machine	29
11	Corns after second pass in the de-kerneller machine	30
12	Corns after third pass in the de-kerneller machine	30
13	Corn kernels from de-kernelling	. 31
14	Corn grits produced	31
15	De-husker machine	53
16	Worm gear power train driving the two rollers	53
17	De-kernel unit	54
18	Milling unit	54
19	The researchers with the adviser in testing the de-husker	. 55

LIST OF APPENDICES

Appendix		Page
1	Working drawings	37
2	Computations	44
3	Design Tables	
	3.1 Typical Properties of Wrought Ferrous Metals	47
	3.2 English Standard Keyway and Key Sizes	48
	3.3 Roller Chain Dimensions	. 49
4	Pictures of the Machine	. 53
5	Bill of Quantities	56