

BANANA PEEL BRIQUETTING MACHINE

A Thesis Presented to Faculty of the Mechanical Engineering Department, College of Engineering, Architecture and Technology De La Salle University - Dasmariñas

In Partial Fulfillment of the Requirements for the ME Research Project (MEET514f)

Submitted by:

RAFAEL BENEDICT M. SO DARLING ANN MAE C. TINIO JURIS PAUL M. STA.ANA

APRIL 2014

ABSTRACT

SO, R.B., TINIO, D.A.M., STA.ANA, J.P., Banana Peel Briquetting Machine. Bachelor of Science in Mechanical Engineering – De La Salle University Dasmariñas, Cavite.

Banana peels are usually thrown away after removing them from the bananas. Although they can be used as fertilizers, the researchers tried to find other possibilities that can be done with the banana peels. By conducting research, different studies show that the peels can be converted into a fuel, called briquettes. These briquettes can serve as a substitute to wood charcoals in which wood charcoals are limited. This alternative fuel may aid in supporting the growing demand of energy of the society.

In this research, the banana peels were initially grinded and then mixed with a stiffener, in which most of the previous studies used sawdust. The mixture was compressed into a mold by using a presser. With several small holes around the mold, during this compression, the moisture was partially removed from the mixture. Once the briquette was formed, it was dried.

The objective of this study was to develop a banana peel briquetting machine. A mock experiment was done to determine certain parameters needed to come up with the design. After the mock experiment, the machine was designed and fabricated that integrated the processes necessary to produce briquettes. Upon completion of the fabrication and assembly of the machine, the researchers

De La Salle University - Dasmariñas

determined the production rate of the briquetter. It took approximately 2.3 minutes to produce the first briquette and, from then on, a stable flow rate of 4 briquettes/minute was attained. Next, two experiments were conducted for the calorific value analysis of the briquette by the use of a bomb calorimeter. The first experiment involved analyzing the calorific value of various briquettes made with different stiffeners, and the briquette that yielded highest calorific value was chosen as the sample for the second experiment. The second experiment was to analyze the calorific value of the briquette as the drying time lengthened at the same temperature. The lowest and highest calorific values obtained from the first experiment were 673 kcal/kg and 1796 kcal/kg respectively. The lowest and highest calorific values obtained from the second experiment were 1743 kcal/kg and 3030 kcal/kg, respectively in which the sample consisted of banana peels, rice husk, and sawdust.

De La Salle University - Dasmariñas

TABLE OF CONTENTS

Page

TITLE PAGE	i
APPROVAL SHEET	ii
GRAMMAR CERTIFICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	vi
TABLE OF CONTENTS	viii
CHAPTER I – Background of the Study	1
Introduction	1
Conceptual Framework	3
General Objective	4
Specific Objectives	4
Significance of the study	5
Scope and Limitations	5
Definition of Terms	6
CHAPTER II – Related Literature and Related Study	8
Related Literatures	8
Related Studies	11
CHAPTER III – Methodology	17
Methods of Research	17
Development of the Prototype	17
Mock Experiment	19
Drawings of the Prototype	20
Design of the Prototype	20
Fabrication and Assembly	21
Testing of the Briquetter	21
Determining Production Rate of the Briquetter	21
Calorific Value Testing of the Briquette	22

viii

De La Salle University - Dasmariñas

Analysis of the Result	23
CHAPTER IV – Date and Results	24
Mock Experiment	24
Briquette Production	25
Calorific Value Testing	25
Results of Calorific Value Testing	27
CHAPTER V – Conclusions and Recommendations	30
Conclusion	30
Recommendations	30
BIBLIOGRAPHY	32
APPENDIX	34
Appendix A – Calculations	35
Appendix B.1 – Properties of Steel	39
Appendix B.2 – Standard Key Sizes for Shaft	41
Appendix C – Cam Profile	42
Appendix D – Design of the Prototype	43
Appendix E.1 – Power Diagram	48
Appendix E.2 – Electrical Diagram	49
Appendix E.3 – Heating Element Diagram	50
Appendix F – Images	51
Appendix G – Author's Biography	56

ix