Garden Waste Shredder

A Project Study Presented to the Faculty of the College of Engineering, Architecture and Technology De La Salle University-Dasmariñas

DO . INFORMATIC

In Partial Fulfillment of The Requirements for the Degree in Bachelor of Science in Mechanical Engineering

> Submitted by: Dello, Marwin Jed C. Salumbides, Eugene C. Mañalac, Bryan A.

> > February 25, 2010

ABSTRACT

Title: Garden Waste Shredder

Researchers:

Dello, Marwin Jed C.

Mañalac, Bryan A.

Salumbides, Eugene C.

Advisers: Engr. Wilfredo Vidal

Engr. Rizalito Tavares

Engr. Marion Depalubos

School: De La Salle University-Dasmariñas

Year: 2009-2010

Degree: Bachelor of Science in Mechanical Engineering

The DLSU-D garden wastes have been one of the major problems of the university. Once these wastes are collected, piles and piles of organic squanders are being produced thus resulting to a larger space for its storage as it is being decomposed naturally. However, the decomposition process takes a minimum period of 4-5weeks before it could be use as organic fertilizers. This is naturally the decomposition process and that researches were conducted to hasten this. Based on the facts and data collected, it has been proven that the decomposition will be hastened if the size or area of the materials being decomposed is smaller.

Due to this, the researchers aimed to provide a machine that could fasten the decomposition process by means of reducing the sizes of the wastes. The researchers designed a shredding machine that can reduce the size of a material to a ratio 6:1 size reduction. The concept of the design and operation is that the garden wastes will be fed through the machine's hopper and the blades inside the shredder's chamber will cut these wastes into small particles until it is small enough for it to fit into the holes of the sifter located at the bottom part of the shredder chamber. The sifter will ensure that the sizes of the shredded materials are small enough to comply with the required size which is very good for composting.

By doing this, the decomposition process which takes about one and a half month will then be reduce to a minimum time of 1 - 2weeks only Thus ensuring a faster means of dispatching the wastes and converting it into a useful element for composting. Now, a lesser area of space for the piles of garden wastes was reduced and that the supply of organic fertilizers will be more abundant due to the expected higher supply of the natural compost materials.

Moreover, different testing measurements were conducted to determine the effectiveness of the developed project. From here the researchers learned the capabilities and limitations of this garden waste shredder.

Table of contents

Chapter 1 – Introduction	
1.1 Historical Background	1
1.2 Statement of the problem	3
1.2.1 Major Goal	3
1.2.2 Specific Goal	3
1.3 Significance of the Study	3
1.4 Scope and Limitation	4
Chapter 2 – Review of Related Literature and Studies	
2.1 Related Literature	6
2.2 Related Equipment	15
2.3 Relevance to Present Study	26
2.4 Definition of Terms	26
Chapter 3 – Methods and Procedure	
3.1 Research Design	31
3.2 Data gathering and Design	31
3.3 Design Computations	32
3.4 Prototyping Dimension and Set-up	42
3.5 Progress of Fabrication	46
3.6 Material Specifications	51
3.7 Theory of Operation	51

Chapter 4 –	Experimentatio	n and Data	Gathering
-------------	----------------	------------	-----------

4.1 Discussion of Results	53
4.2 Project Description	57
4.3 Flow Diagram	59

4.4 Material Costing60

Chapter 5 – Conclusion and Recommendations

5.1 Summary of Findings	61
5.2 Conclusion	62
5.3 Recommendations	63
5.4 Maintenance	64

Appendix:

Appendix 1 – Typical Properties of wrought ferrous metals	65
Appendix 2 – Factor of Safety (Design Factor)	66
Appendix 3 – shearing Stress Formula	66
Appendix 4 – Length of Belt Formula	67
Appendix 5 – Open Belt and Closed Belt	68
Appendix 6 – Service Factor	69
Appendix 7 - Belt Section	70
Appendix 8 – Standard V-belt Lengths; Horsepower Constants	70

Appendix A – Garden Waste Shredder	71
Appendix B – Shredder Frame	72
Appendix C – Angle Bar 1	73
Appendix D – Angle Bar 2	73
Appendix E - Angle Bar 3	74
Appendix E.1 - Top view of Angle Bar 3	74
Appendix E.2 – Front view of Angle Bar 3	74
Appendix E.3 - Left-side view of Angle Bar 3	74
Appendix F – Isometric view of Angle Bar 4	75
Appendix F.1 – Top view of Angle Bar 4	75
Appendix G – Isometric view of Angle Bar 5	75
Appendix G.1 – Top view of Angle Bar 5	75
Appendix H – Isometric view of Angle Bar 6	76
Appendix H.1 – Front view of Angle Bar 6	76
Appendix I – Isometric view of Angle Bar 7	76
Appendix I.1 – Top view of Angle Bar 7	76
Appendix J – Isometric of Steel Plate 1	77
Appendix J.1 – Front view of Steel Plate 1	77
Appendix K – Isometric view of Steel Plate 2	77
Appendix K.1 – Front view of Steel Plate 2	77
Appendix L – Isometric view of Steel Plate 3	78
Appendix L.1 – Front View of Steel Plate 3.1	78
Appendix M – Exploded view of Steel Plate 3	78

Appendix M.1 – Front view of Steel Plate 3.2	78
Appendix N – Isometric view of Steel Plate 4	79
Appendix N.1 – Front view of Steel Plate 4.1	79
Appendix O – Exploded view of Steel Plate 4	79
Appendix O.1 – Front view of Steel Plate 4.2	79
Appendix P – Isometric view of Steel Plate 5	80
Appendix P.1 – Exploded view of Steel Plate5	80
Appendix P.2 – Top view of Steel Plate 5.1	80
Appendix P.3 – Left side view of Steel Plate 5	80
Appendix Q – Motor Mounting	81
Appendix Q.1 – Top view of Motor Mounting	81
Appendix R – Isometric view of Steel Plate 6	82
Appendix R.1 – Top view of Steel Plate 6	82
Appendix R.2 – Front view of Steel Plate 6	82
Appendix R.3 – Left side view Steel Plate 6	82
Appendix S – Feeding Hopper Isometric view	83
Appendix S.1 – Top view of S.1	83
Appendix S.2 – Left side view of S.2	83
Appendix S.3 – Front view of S.3	83
Appendix T – Feed Hopper Cover	84
Appendix T.1 – Top view of Flexi Glass	84
Appendix T.2 – Top view of Metal Sheet	84
Appendix T.3 – Front view of Metal Sheet	84

Appendix U – Top Cover Isometric View	85
Appendix U.1 – Top view of Top Cover	85
Appendix U.2 – Front view of Top Cover	85
Appendix U.3 – Left side view of Top Cover	85
Appendix V – Shredder Blade	86
Appendix V.1 – Hub	86
Appendix V.2 – Front view of Blade	86
Appendix V.3 – Left side view of Blade	86
Appendix V.3.1 – Blade 1	87
Appendix V.3.2 – Blade 2	87
Appendix V.3.3 – Blade 3	87
Appendix V.3.4 – Blade 4	87
Appendix V.3.5 – Blade 5	88
Appendix V.3.6 – Blade 6	88
Appendix V.3.7 – Blade 7	88
Appendix W – Sifter Isometric view	89
Appendix W.1 – Top view of Sifter	89
Appendix W.2 – Front view of Sifter	89
Appendix W.3 – Left side view of Sifter	89
Appendix X – Flat Bar Isometric view	90
Appendix X.1 – Top view of Flat Bar	90
Appendix X.2 – Front view of Flat Bar	90
Appendix X.3 – Left side view of Flat Bar	90

Development of Project	91
References	92
Curriculum Vitae	93

List of Figures

Figure 2 – 1 Shear Diagram	11
Figure 2 – 2 Centrifugal and Centripetall force illustration	13
Figure 2 – 3 Sieve	14
Figure 2 – 4 Automatic Paper Shredder	16
Figure 2 – 5 Manually operated paper shredder	17
Figure 2 – 6 Drum type wood chipper	19
Figure 2 – 7 Disk type wood chipper	20
Figure 2 – 8 Industrial Shredder	21
Figure 2 – 9 Industrial Shredder Blades	21
Figure 2 – 10 Macerator	22
Figure 2 – 11 Cylindrical Cutting Disk	23
Figure 2 – 12 Rotor Shear Blades	24
Figure 2 – 13 Paper Shredder Blade	25
Figure 3 – 1 Sifter Figure	42
Figure 3 - 2 Frame of the shredder	42
Figure 3 – 3 Shaft Design and dimension	43
Figure 3 – 4 Adjustable Flat Bar	44
Figure 3 – 5 Motor Shaft & Shredding Blade	45

Shaft center to center distance

Figure 3 – 6 Frame of the shredder	46
Figure 3 – 7 Shredding blades shaft installation	46
Figure 3 – 8 Shaft of the Shredding blades	47
Figure 3 – 9 Shredding blades shaft assembly	47
Figure 3 – 10 Adjustable Flat bar	48
Figure 3 – 11 Sifter Assembly	48
Figure 3 – 12 Shredding chamber	49
Figure 3 – 13 Left side view of the shredder w/o	49
the cutting blades and cover.	
Figure 3 – 14 Mounting of Belt	50
Figure 3 – 15 General Assembly	50
Figure 4 – 1 Output vs Continuous Service Graph	56
Figure 4 – 2 Input vs Output Graph	56
Figure 4 – 3 Flow Diagram	59