Temperature Controlled Electric Fan

A Research Study

Presented to the Faculty of

College of Engineering, Architecture, and Technology

De La Salle University – Dasmariñas

Dasmariñas, Cavite

In Partial Fulfillment

of the Requirements for the Degree of Bachelor of Science in

Electronics and Communications Engineering

JEFFREY R. JOYA

BENEDICT B. PAGUAPO

WILLY JAY L. SARAZA

ECE 52

March 2008

ABSTRACT

Title:	Temperature Controlled Electric Fan
Researchers:	JOYA, Jeffrey R. PAGUAPO, Benedict B. SARAZA, Willy Jay L.
Adviser:	Mr. Danilo Reyes
School:	De La Salle University – Dasmariñas
Pages:	110
Year:	2007 – 2008
Degree:	Bachelor of Science in Electronics and Communications Engineering

Modernization, automation and computerization are relevant words in this very fast changing world. Most system international and local are shifting and switching to manual operation to more convenient way of processing a system.

This project design, Temperature Controlled Electric Fan, is intended to tackle on how to construct a temperature controlled electric fan. With the use of temperature sensor, the electric fan will automatically turns on/off.

This study will focus on the temperature that will trigger by the user based on the temperature he/she wants. For example, the prototype will work if the temperature trigger by the user in each switch is greater than or equal to the actual temperature in that certain area.

TABLE OF CONTENTS

		Page
	Title Page	i
	Approval Sheet	ii
	Acknowledgement	iii
	Abstract	iv
	Table of Contents	V
	List of Figures	vii
	List of Tables	viii
Chapter		
1	The Problem and Its Background	
	Introduction	1
	Background of the Study	2
	Conceptual Framework	2
	Statement of the Problem	3
	Objectives	4
	Scope and Limitation of the Study	4
	Significance of the Study	4
	Definition of Terms	6
2	Review of Related Literatures and Studies	
	Schematic Diagram	18
	Modeling	19
	Design	23
	Testing and Evaluation	26
5	Conclusion and Recommendation	
	Conclusion	39
	Recommendation	40
	Cost Analysis	41

Resources

Internet Resources	42
Books	42

APPENDICES

- A Source Code
- **B** Specifications
- **C** Curriculum Vitae

LIST OF FIGURES

FIGURE	TITLES	PAGE
2.1	Temperature Controlled NICD Charger	7
3.1	Flowchart of the Procedures	14
3.2	Block Diagram	15
3.3	Flowchart of the Program	16
4.1	POWER SUPPLY DIAGRAM	18
4.2	MCU Interface	19
4.3	INPUT DIAGRAM	20
4.4	OUTPUT DIAGRAM	21
4.5	PWM <mark>DI</mark> AGRAM	22
4.6	Tracks o <mark>f MCU</mark> Interface	23
4.7	Track <mark>s</mark> of Po <mark>wer</mark> Supply	19
4.8	Tracks o <mark>f t</mark> he Relay	25
4.9	Viewing the Initial Temperature	26
4.10	Setting the Trigger Temperature for Speed 1	27
4.11	Setting the Trigger Temperature for Speed 2	27
4.12	Setting the Trigger Temperature for Speed 3	28
4.13	Initial Speed and Temperature	28
4.14	Speed and Temperature when the window is closed	29
4.15	Initial Temperature	31
4.16	Setting the Trigger Temperature for Speed 1	31
4.17	Setting the Trigger Temperature for Speed 2	32
4.18	Setting the Trigger Temperature for Speed 3	32
4.19	Initial Speed and Temperature	33
4.20	Speed and Temperature when the Air Con Run for	33
	Several Hours	

LIST OF TABLES

FIGURE	TITLES	PAGE
4.1	Test in a Room with open windows	26
4.2	Test in a Air Conditioned Room	30
5.1	Cost Analysis	41

