De La Salle University – Dasmariñas College of Engineering, Architecture and Technology Dasmariñas, Cavite

> A Project Study Presented to the Faculty of Engineering Department

REMOTE CONTROLLED LIGHTING SYSTEM FOR CEAT BUILDING

In Partial Fulfillment of the Requirement for the Degree Bachelor of Science in Electronics Engineering

Submitted by:

Daluro, Jeffrey L. Maputol, Edilberto Rey T. Ramos, Ma. Lucille D.

March 2008

ABSTRACT

Title	:	Remote Controlled Lighting System for CEAT Building
Researchers :		Daluro, Jeffrey L.
		Maputol, Edilberto Rey T.
		Ramos, Maria Lucille D.
Adviser	:	Engr. Emmanuel Longares
School	:	De La Salle University – Dasmariñas
Pages	:	82 pages
Year	:	2007 – 2008
Degree	:	Bachelor of Science in Electronics Engineering

Light control needs a control medium so that the properties of their behavior could adjust to the brightness and dimness. But not all types of lights can control their dimness and brightness some are fixed. In other words, the fluorescent lights cannot be dimmed and incandescent light can be dimmed

The researchers built a programmable based Remote Controlled Lighting System designed for DLSU – D CEAT Building for effective conservation of energy. The prototype has 3 sections; the transmitter section, receiver section and dimmer section. The transmitter section has a code embedded and has a fixed frequency so that it will be compatible to the IR receiver of the receiver section and can transmit the code to the receiver section. The receiver section accepts the code that has been transmitted and executes the right code and performs the command of the transmitter. And the dimming section controls the properties of lights by adjusting it to dim to bright and on or off.

TABLE OF CONTENTS

Title Page	
Approval Sheet	i
Acknowledgement	ii
Abstract	iii
Table of Contents	iv
List of Tables	vi
List of Figures	vii
List of Appendices	viii
Chapter I – The Problem and Its Background	

Introduction		
Background of the Problem		
Conceptual Framework		
Statement of the Problem	4	
Scope and Limitation	4	
Significance of the Study	5	
Definition of Terms	6	
Chapter II – Review of Related Literatures and Studies		
Conceptual Literature		
Related Studies	11	
Chapter III – Research Methodology and Procedure		
Hardware Development	16	
Steps in making the Prototype	19	
Theory of Operation	25	
Program Development	26	

Chapter IV Dresentation Analysis and Interpretation of Data		
Chapter IV – Presentation, Analysis and Interpretation of Data		
Presentation of Output	55	
Testing	59	
Analysis	64	
Mathematical Analysis	71	
Efficiency	75	
Material listing and costing	76	
Chapter V – Developed Project		
Conclusion	79	
Recommendation		
Reference	81	
Curriculum Vitae		

LIST OF TABLES

Table 3.1	List of materials for etching and soldering	19
Table 3.2	List of component for light dimmer circuit	21
Table 3.3	List of materials for casing	22
Table 3.4	List of material for modifying the transmitter	23
Table 4.1	Using the modified transmitter for incandescent lamp	60
Table 4.2	State of a fluorescent light	62
Table 4.3	Evaluating the infrared transmission is distance.	
	Without glass and with glass	66
Table 4.4	Equivalent distance and angle	69
Table 4.5	Incandescent light capacity and usage	71
Table 4.6	Fluorescent light capacity and usage	74
Table 4.7	Material listing and costing	76

LIST OF FIGURES

Figure 1.1	The Research Paradigm	3
Figure 2.1	Modulated IR Signal	10
Figure 2.2	Raw Modulated IR signal	10
Figure 3.1	PCB lay-out of light dimmer.	
	(a) Receiver section and power supply.	
	(b) Light dimmer section.	19
Figure 3.2	Schematic diagram of IR light dimmer	20
Figure 3.3	Added circuit to the availed transmitter kit	23
Figure 3.4	Combined Schematic diagrams of the transmitter kit	
	and PIC elements.	24
Figure 3.5	Operation of the system	25
Figure 4.1	Transmitting the code via IR	56
Figure 4.2	Block diagram of the circuit with the program to	
	execute the process using PIC16F876 and PIC16F876	57
Figure 4.3	Assigned button for manual operation	59
Figure 4.4	Lowest dim in part of manual operation for	
	incandescent lamp	59
Figure 4.5	Full bright for manual operation for an	
	incandescent lamp	60
Figure 4.6	Buttons for transmitter, the OFF, DIM, BRIGHT	
	and ON	61
Figure 4.7	Controlling the incandescent lamp from lowest	
	state of dim	61
Figure 4.8	Highest state of brightness for incandescent lamp	62
Figure 4.9	The lowest dim of the fluorescent light	63
Figure 4.10	The full bright of a fluorescent light	63
Figure 4.11	Testing the distance of IR (a) With glass (b) With glass	65
	at 0.4 m (c) With glass at 0.2 m	
Figure 4.12	Angle testing, area transmission	68

LIST OF APPENDICES

- Appendix A: Curriculum Vitae
- Appendix B: Specification sheet of BT136
- Appendix C: Specification sheet of PIC16F84A
- Appendix D: Specification sheet of PIC16F876
- Appendix E: Specification sheet of LM7805
- Appendix F: Proofreading Certification
- Appendix G: Letter for changing the Objective

