AUTOMATED PAPER RECYCLING MACHINE

A Project Study
Presented to

The Faculty of Engineering

De La Salle University – Dasmariñas

In Partial Fulfillment
Of the requirements for the Degree

Bachelor of Science in Electronics and Communications Engineering

DE VILLA, Christian D.
JUMARANG, Dennis T.
SARMIENTO, Mark R.
VISPERAS, Erick Von D.

March 2010

ABSTRACT

Title: Automated Paper Recycling Machine

Researchers: De Villa, Christian D.

Jumarang, Dennis T.

Sarmiento, Mark R.

Visperas, Erick Von D.

Adviser: Engr. Jose Rizaldy A. De Armas

School: De La Salle University – Dasmariñas

Pages: 120

School Year: 2009 - 2010

Degree: Bachelor of Science Electronics and Communications Engineering

Paper has the most important and useful role in the community. It is one of the materials used for non-verbal communication especially for writing down information and contracts. Considering that the natural resources are not infinite, the idea of paper recycling came across the researchers mind. There are already plants and companies that are recycling papers but equipments for each different process are bulky and space consuming so it became a challenge for the researchers to make a prototype that will have the basic processes needed in recycling papers in a single machine. These basic processes in recycling are the crushing process and screening process. The prototype will automatically crush the scrap papers (used bond papers) then proceed to the screening process.

TABLE OF CONTENTS

		Page Number
TITLE PAGE	≣	i
APPROVAL	SHEET	ii
ACKNOWLE	EDGEMENT	iii
ABSTRACT		iv
TABLE OF (CONTENTS	V
LIST OF FIG	BURES	vii
LIST OF TA	BLES	viii
CHAPTER I	THE PROBLEM AND ITS BACKGROUND	
	Introduction	1
	Background of the Study	2
	Conceptual Framework	4
	Statement of the Problem	5
	Significance of the Study	6
	Scope and Limitation	7
	Definition of Terms	8
CHAPTER II	REVIEW OF THE RELATED LITERATURE AND ST	UDIES
	Conceptual Literature	10
	Foreign Literatures	14
	Foreign Studies	16
CHAPTER II	II METHODS OF RESEARCH AND PROCEDURE	
	Research Design	21
	Research Procedure	21
	Research Instrument	22
	Theory of Operation & the Construction of the System	n 23
	Advantage of Pneumatics	26

	Scher	natic Diagrams	27
	Proce	dural Flow Chart	31
CHAPTER I	V TES	TING, DATA GATHERING AND RESEARCH FINDING	3
	Proto	type Operation	
		- Testing	33
	Data	Gathering	39
	Resea	arch Finding	
		- Acceptability and Reliability	42
CHAPTER V	/ SUMI	MARY, CONCLUSION AND RECOMMENDATION	
	Sumn	nary	43
	Concl	usion	45
	Recor	mmendation	45
APPENDICE	S		
	A.	Pictures of Actual Device & Experimentation	
	B.	Source Codes	
	C.	Cost Analysis	
	D.	Data Sheet and Specifications	
	E.	Gantt Chart	
	F.	User Manual	
	G.	Survey Forms	
	H.	Proposal Sheet	
	l.	Certification of Proofreading	
	J.	Curriculum Vitae	

BIBLIOGRAPHY

LIST OF FIGURES

Figure 1.1:	Conceptual Framework	4
Figure 2.1:	Microscopic Structure of paper	14
Figure 2.2:	Hemp Wrapping Paper	15
Figure 2.3:	Manual Paper Making	16
Figure 3.1:	Regulated Power Supply	23
Figure 3.2:	Relay Drivers for Solenoid	23
Figure 3.3:	Solid State Relay	24
Figure 3.4:	LCD Module	24
Figure 3.5:	PIC Microcontroller Module	24
Figure 3.6:	Water Sensor	25
Figure 3.7:	Air Compressor	25
Figure 3.8:	Pneumatic Cylinders	25
Figure 3.9:	Solenoid Relay Driver (Up/Down & Left/Right Cylinder)	27
Figure 3.10:	Solenoid Relay Driver (Blender Valve Opener Cylinder)	27
Figure 3.11:	(a) Regulated Bridge Type Power Supply	28
	(b) Unregulated Bridge Type Power Supply	28
Figure 3.12:	Blender Relay Driver Circuit Diagram	29
Figure 3.13:	Water Level Sensor	29
Figure 3.14:	MCU Interface Schematic	30
Figure 3.15:	Procedural Flow Chart	31
Figure 3.16:	Conceptual Process	32
Figure 4.1:	(a) Placing paper inside the blender	33
	(b) Placing water inside the blender	33
Figure 4.2:	Initial Display	33
Figure 4.3:	Configuring the Settings of Up/Down Count and	34
	Time Delay for Drying and Crushing	
Figure 4.4:	Confirmation Message before the Blending Time starts	35
Figure 4.5:	Message Display when the Crushing Process ends	35

Page Number

Figure 4.6:	Water Sensor	36
Figure 4.7:	Message Display before the Scooping Process starts	36
Figure 4.8:	(a) Downward Leveling of Screen	36
	(b) Upward Leveling of Screen	36
Figure 4.9:	(a) Water are being separated from the fibers	37
	(b) Fibers are being placed inside the screen	37
Figure 4.10:	End of the Leveling Process	38
Figure 4.11:	Drying Process	38

LIST OF TABLES

		Page Number
Table 4.1:	Relationship between Two Pieces of Bond Papers	39
	and Crushing Time	
Table 4.2:	Relationship between Three Pieces of Bond Papers	40
	and Crushing Time	
Table 4.3:	Relationship between Four Pieces of Bond Papers	41
	and Crushing Time	