EFFECTS OF COMMERCIALY-AVAILABLE GRAPE SEED OIL TO THE LIPID PROFILE OF HYPERLIPIDEMIA-INDUCED
Rattus norvegicus (ALBINO RAT)

A Research Presented to the
Biological Sciences Department
College of Science and Computer Studies
De La Salle University - Dasmarñas
City of Dasmarñas, Cavite

In Partial Fulfilment of the Requirements
for the degree of Bachelor of Science in Medical Biology

JOHN ADRIEL T. MOSTAJO
JAMES DANIEL E. OMALIN
March 2014
ACKNOWLEDGMENTS

The researchers wish to express their utmost gratitude and appreciation to the following:

Mr. Marlon C. Pareja, the thesis adviser of the researchers for the guidance and succor he bestowed to the researchers for them to make an efficient dissertation about the specific subject matter.

Dr. Johnny A. Ching, Mr. Michael C. Guyamin, and Dr. Ronaldo D. Lagat, the members of the panel in screening the research and their most valued pieces of advice intended for the sake of improving this study.

Dr. Sonia Gementiza and the staff of Aklatang Emilio Aguinaldo, Thesis and Archives section for the preeminent abetment to the researchers.

Dr. Johnny A. Ching, the researchers’ Special Problem for Medical Biology professor, for his excellence in explaining the prerequisites for a professional research work.

Ms. Mae Flor S. Adalid, Ms. Gladys A. Siringan and Dr. Dominic L. Tucay for their medical assistance throughout the research period.

Those who served as inspiration and guidance to the researchers; in which this study would have not been possible without their existence.

And most specially, God Almighty, in Whom the researchers humble themselves for His spiritual guidance in their everyday lives.
ABSTRACT

The present study aimed at evaluating the lipid lowering activity of commercially prepared grape seed oil (GSO) in hyperlipidemia-induced male albino rats. The different groups of animals were given a high-fat diet to induce hyperlipidemia (high-saturated fatty acid butter rich diet). GSO was administered to the hyperlipidemia-induced rats at doses approx. 0.40 mL, approx. 0.80 mL, and approx. 1.60 mL respective to treatment groups. The effect of GSO to the lipid profile parameters (total cholesterol, triglycerides, VLDL, LDL, and HDL) was measured. GSO did not produce a significant (p<0.05) decrease in all lipid profile parameters except for LDL. The only the 0.40 mL dosage yielded the effects with significance to the negative control. The findings suggest that GSO has a lipid-lowering activity on the LDL of the test subjects.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approval Sheet</td>
<td>1</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>2</td>
</tr>
<tr>
<td>Abstract</td>
<td>3</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>4</td>
</tr>
<tr>
<td>CHAPTER 1: INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1 Background of the Study</td>
<td>8</td>
</tr>
<tr>
<td>1.2 Conceptual Framework</td>
<td>10</td>
</tr>
<tr>
<td>1.3 Statement of the Problem</td>
<td>10</td>
</tr>
<tr>
<td>1.4 Scope and Limitations</td>
<td>11</td>
</tr>
<tr>
<td>1.5 Significance of the Study</td>
<td>12</td>
</tr>
<tr>
<td>1.6 Definition of Terms</td>
<td>13</td>
</tr>
<tr>
<td>CHAPTER 2: LITERATURE REVIEW</td>
<td></td>
</tr>
<tr>
<td>2.1 Conceptual Literature</td>
<td>15</td>
</tr>
<tr>
<td>2.2 Related Studies</td>
<td>34</td>
</tr>
<tr>
<td>CHAPTER 3: METHODOLOGY</td>
<td></td>
</tr>
<tr>
<td>3.1 Research Design</td>
<td>38</td>
</tr>
<tr>
<td>3.2 Research Procedure</td>
<td>39</td>
</tr>
<tr>
<td>3.3 Data Gathering and Statistical Analysis</td>
<td>42</td>
</tr>
<tr>
<td>CHAPTER 4: RESULTS AND DISCUSSION</td>
<td></td>
</tr>
<tr>
<td>4.1 Results</td>
<td>43</td>
</tr>
</tbody>
</table>
CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

5.2 Recommendations

Cited References

Appendices

A. Standard Procedures and Process of Centrifugation

B. Raw Data

C. Photo Documentation

D. Curriculum Vitae
List of Tables

 4.1 Mean TC levels for each treatment group 43
 4.2 Mean TG levels for each treatment group 43
 4.3 Mean VLDL levels for each treatment group 44
 4.4 Mean LDL levels for each treatment group 44
 4.5 Mean HDL levels for each treatment group 44
 D.1 Initial lipid profile 64
 D.2 Pre-treatment lipid profile 65
 D.3 Post-treatment lipid profile 66
 D.4 P-values for initial and pre-treatment (paired t-test) 67
 D.5 ANOVA for Total Cholesterol 67
 D.6 ANOVA for Triglycerides 68
 D.7 ANOVA for VLDL 68
 D.8 ANOVA for LDL 69
 D.9 ANOVA for HDL 69
 D.10 Tukey Test for LDL 70
 D.11 Paired t-test comparing initial and post LDL at T₁ 70
 D.12 Paired t-test comparing initial and post LDL at T₂ 71
 D.13 Paired t-test comparing initial and post LDL at T₃ 71

List of Figures

 2.1 Lipid digestion and absorption 19
 2.2 Activation, transport, and β-oxidation of fatty acids 23
2.3 Carboxylation of acetyl-CoA to malonyl-CoA
2.4 Pathway of lipogenesis
2.5 Mevalonate synthesis
2.6 Squalene synthesis
2.7 Cholesterol synthesis

List of Plates

C.1 Male albino rats in their respective housings
C.2 Researcher feeding the rats with normal food pellets
C.3 Preparation of modified food pellets
C.4 Prepared modified food pellets
C.5 Preparation of grape seed oil
C.6 Inducement of grape seed oil to test subject
C.7 Preparation of tranquilizer prior to blood collection
C.8 Intramuscular injection of tranquilizer
C.9 Tail vein extraction
C.10 Tail vein extraction
C.11 Cholesterol Reagent
C.12 Triglycerides Reagent
C.13 HDL Cholesterol Reagent
C.14 Centrifugation of collected blood performed by the medical technician
C.15 Analysis of collected blood assisted by the medical technician