Solar-Powered Diaphragm Water Pump

A Project Study

Presented to the Faculty of

College of Engineering, Architecture and Technology

De La Salle University – Dasmariñas

Dasmariñas, Cavite

In Partial Fulfillment Of The Requirements for the degree Bachelor of Science Major in Electronics Engineering

By:

BERMUDEZ, KAREN T. CAMPAÑANO, LARIZA MAE B. DICTADO, NIÑO CARLO A. GATPANDAN, KIM LESTER C. MARI, CARL GREGORY S.

March 2011

ABSTRACT

Title	:	Solar-Powered Diaphragm Water Pump
Researchers	:	BERMUDEZ, Karen T.
		CAMPAÑANO, Lariza Mae B.
		DICTADO, Niño Carlo A.
		GATPANDAN, Kim Lester C.
		MARI, Carl Gregory S.
School	N. VI	De La Salle University – Dasmariñas
College	×	College of Engineering, Architecture and Technology
Pages	0 LA 201	
School Year	CLIME T	2010 – 2011

The purpose of this study was to minimize the cost of electric charge and the feasibility of using Photovoltaic solar power to assist the motor in water pumping. This project examines available solar equipment and technologies coupled with requirements for operation, installation and maintenance. The project begins with an analysis of the current and voltage state of the motor required for the system, and the size of the tank for Solar PV water pump installation. It provides an example of how solar power can be used in a motor water pump system. Next, the project addresses commercially

available solar equipment and other electronic technologies that enhance the performance of solar PV systems while reducing the overall cost. The project also provides details on the installation, operation, maintenance, and durability of PV systems. Finally, the project addresses the financial cost of using solar PV systems in the installation of water pump system. Test data are gathered and analysed to determine the potential benefits of emerging solar technologies. At the conclusion of the project, information is available for the decision makers if the solar PV water pump system is feasible at some level of implementation to minimize the electric charge cost.

TABLE OF CONTENTS

Approval Sheet Acknowledgment Abstract Table of Contents List of Figures List Of Tables	i ii vi viii x
Chapter 1: THE PROBLEM AND ITS BACKGROUND Background of the Study Statement of the Problem Conceptual Framework Scope and Limitation of the Study Significance of the Study Definition of Terms	1 3 4 5 7
Chapter 2: REVIEW OF RELATED LITERATURE AND STUDIES Related Foreign Literature and Studies Related Local Literature and Studies Relevance to the Present Study	9 17 19
Chapter 3: RESEARCH METHODS AND PROCEDURE Design Considerations Solar Panel Selection DC Water Pump Selection Controller Circuit Selection Prototype Design Solar Panel Setup Position DC Diaphragm Pump Setup Electrode Switch Housing Design of the Circuit Electrical Design	21 24 25 26 29 30 30 31
Chapter 4: PRESENTATION, ANALYSIS AND INTERPRETATION OF DATA The Installation Assembly of the Solar Panel The Buck Converter Circuit The Fixed Pulse Gate Control The DC Water Pump The Solar-Powered Diaphragm Water Pump Final Testing Results Efficiency Solar Panel Sizing Up Material Costing	47 47 52 55 55 56 60 61 62

Chapter 5: CONCLUSION AND RECOMMENDATIONS	
Summary	64
Conclusion	65
Recommendations	67

Appendices

Appendix A	Specification: 20 Watts Class A Mono Crystalline Solar Panel	69
Appendix B	Specification: 10 Watts Class A Mono Crystalline Solar Panel	71
Appendix C	DC Water Pump Specifications	72
Appendix D	Average Sunlight Hours per day in the Philippines	73
Appendix E	MOSFET Switch IRF630A Specifications	74
Appendix F	MOSFET Driver 2n7000 Specifications	80
Appendix G	PIC16F877A Specifications	86
Appendix H	PIC16F84A Specifications	93
Appendix I H	Hex Inverter 74C04 Specifications	97
Appendix J	Schottky Diode 1N5822 Specifications	102
Appendix K	Pulse Width Modulation Control (using PIC 16F877A) Source Code	104
Appendix L	Fixed Pulse Control (using PIC 16F84A) Source Code	109
Appendix M	Curriculum Vitae	111

Bibliography

125

LIST OF FIGURES

Figure 1.1.	Solar Powered Water Pump System Flow Chart	3
Figure 2.1.	Solar Homes.us. Solar Water Pumps, Basic design of solar- powered submersible pump	10
Figure 2.2.	Puchong, Selangor D. E. Solar Cell Origin, Solar deep-well water pump system	12
Figure 2.3.	Microchip Technology,Inc. Microchip Webseminars Buck Converter Design Example, Schematic Diagram of a Buck Converter	13
Figure 2.4.	Renewable Energy – Solar Power. Energy Matters, Batanes Alternative Energy and Enhancement Project	18
Figure 3.1	World Daily Solar Insolation, Solar Insolation Map	22
Figure 3.2.	DP-60 Model DC Diaphragm Pump	25
Figure 3.3.	Actual Solar Panel Stand	28
Figure 3.4.	Diaphragm Pump Setup	29
Figure 3.5.	The circuit enclosed in a box; mounted in the solar panel stand.	30
Figure 3.6.	Buck Converter Topology	32
Figure 3.7.	Flowchart of the Program	35
Figure 3.8.	PIC PWM Calculator and Code Generator, Design Parameters	36
Figure 3.9.	Schematic Diagram of Buck Converter with PWM Control (PIC16F877A)	38
Figure 3.10.	PCB Design and Real World View of the Buck Converter with PWM Control (using PIC16F877A)	39
Figure 3.11.	Hutchinson, Alan. Build this simple mini maximiser, Schematic Diagram of the Mini-Maximiser Circuit	42
Figure 3.12.	PCB Design and Real World View of the Mini-Maximiser Circuit	42
Figure 3.13.	Schematic Diagram of Buck Converter with Fixed Pulse Control (PIC16F84A)	45
Figure 3.14.	PCB Design and Real World View of the Buck Converter with Fixed Pulse control (using PIC16F84A)	46
Figure 4.1.	Parallel Connection of the Solar Panel	48
Figure 4.2.	The Buck Converter Circuit Connected to the Solar Panel	52

Input and Output Voltage at Full Load	58
Buck Converter's Output Current	58
Buck Converter's Output Power	59
Flow Rate	59
Efficiency of the System	61
	Input and Output Voltage at Full Load Buck Converter's Output Current Buck Converter's Output Power Flow Rate Efficiency of the System

LIST OF TABLES

Table 3.1.	Specifications of the Solar Panel	23
Table 3.2.	Average Solar Insolation in Dasmariñas City Measured in kWh/m ²	27
Table 3.3.	PIC16F877A Register Configuration	37
Table 4.1.	Actual Power at Different Temperature Condition	50
Table 4.2.	Solar Panel Open Circuit Voltage	51
Table 4.3.	Final Test Result	57
Table 4.4.	Overhead of DC Diaphragm Pump in Meters	60
Table 4.5.	List of Material Costings	63

