IMPROVED POWER FACTOR CORRECTOR DEVICE WITH INTEGRATED MICROCONTROLLER BASED SWITCHING UNIT

A Project Study Presented to the Faculty of the College of Engineering, Architecture and Technology

De La Salle University – Dasmariñas

In Partial Fulfillment
of the Requirements for the Degree of
Bachelor of Science in Electronics and Communications Engineering

AMON, Ramona Chariz A.

CASACOP, Ivan C.

OSEÑA, Boen Ivan John R.

PANGANIBAN, Raymond B.

ECE51

ABSTRACT

Title: Improved Power Factor Corrector Device with Integrated Microcontroller Based

Switching Unit

Researchers: Amon, Ramona Chariz A.

Casacop, Ivan C.

Oseña, Boen Ivan John R.

Panganiban, Raymond B.

Adviser: Engr. Kathleen Ann G. Villanueva

School: De La Salle University – Dasmariñas

Pages: 145

the household.

Degree: Bachelor of Science in Electronics and Communications Engineering

The research study is all about power factor correction which affects the power consumption of every appliance in the household. Power Factor Correction involves controlling resistive, inductive and capacitive loads. Inductive loads consume more power and some of this power is being wasted. Correcting the power factor minimizes the power wasted by these loads and maximizing the potential of the appliances in

The concept of the 'Improved Power Factor Corrector Device with Integrated Microcontroller Based Switching Unit' had undergone planning, designing. experimenting, troubleshooting and implementation. Since the research study requires a prototype, the researchers have designed the device that is applicable to

ii

household use. The fields that are considered in conceptualizing and making the project are Electronics Engineering and Electrical Engineering. Since the research study is dealing with power consumptions, high voltages and currents, the researchers had studied and reviewed Electrical Engineering subjects such as Electrical Circuits. The research prototype will be automated and needs a good background on Microcontrollers and Electronic components. The subjects that the researchers had reviewed are Power Electronics, Industrial Electronics, Microcontrollers and Electronic Circuits.

The research study undergone processes to ensure project credibility. Data are gathered from experimentations using household appliances, the research prototype and the power saver sold in the market. The results are factual and had been evaluated by professional Electronics and Electrical Engineers.

TABLE OF CONTENTS

Approval Sheet	i
Abstract	ii
Acknowledgement	iv
Table of Contents	٧
List of Figures	vii
List of Tables	viii
List of References	ix
Chapter 1. The Problem and its Background	
Introduction	1
Background of Study	2
Conceptual Framework	6
Statement of Problem.	9
Significance of Study	10
Scope and Limitations	11
Definition of Terms	12
Chapter 2. Review of Related Literature and Study	
Foreign Literatures	15
Local Literatures	20
Synthesis	23
Chapter 3. Research Methodology	
Procedure	27
Schematic Diagram	36
Design Layout	38
Program	41

System Design	56
Microcontroller Program Cycle	57
Process Overview	58
Output	59
Chapter 4. Analysis and Interpretation of Data	
Presentation of the Project	60
Experimentation Results	61
Interpretation and Analysis of Data	67
Graphical Presentation of Data	69
Evaluation	75
Chapter 5. Conclusion and Recommendations	
Summary	80
Conclusion	81
Recommendations	82

LIST OF FIGURES

Figure 1.1: Power Factor Triangle	4
Figure 1.2:Conceptual Framework	6
Figure 3.1: Actual Measurement of Power Analyzer	29
Figure 3.2: Power Analyzer	31
Figure 3.3: Symbol of Opto Isolator	32
Figure 3.4: Symbol of a TRIAC	33
Figure 3.5: 4X20 LCD	35
Figure 3.6: Switching Circuit Diagram	36
Figure3.7: PIC MCU Circuit Diagram	37
Figure 3.8: Switching Circuit Layout	38
Figure 3.9: PIC Microcontroller Layout	39
Figure 3.10: Casing design of the device	54
Figure 3.11: System Design Flowchart	56
Figure 3.12: Microcontroller Program Flowchart	57
Figure 4.1: Device during Testing	60
Figure 4.2: Current Consumption w/o Power Correction Graph	69
Figure 4.3: Current Consumption w/ Power Saver Graph	70
Figure 4.4: Current Consumption w/ Power Factor Corrector Graph	71
Figure 4.5: Current Consumption (LCD Display) Graph	72
Figure 4.6: Current Consumption (Clamp Meter) Graph	73
Figure 4.7: Current Consumption with Power Saver Graph	74
Figure 4.8: Current Consumption w/ Power Factor Corrector	74
Figure 4.9: The Functionality Pie Chart	76
Figure 4.10: The Efficiency Pie Chart	77
Figure 4.11: The Design Pie Chart	78
Figure 4.12: The Over-all Rating Pie Chart	79

LIST OF TABLES

Table 4.1: Actual Data from the Power Analyzer	61
Table 4.2: Data of Current Consumption without Correction	63
Table 4.3: Data of Current Consumption from the Improved	
Power Factor Corrector	64
Table 4.4: Data of Current Consumption from the	
Commercial Power Saver	65
Table 4.5: Percentage Savings Computation	66

LIST OF REFERENCES

Material Listing	83
Gantt Chart	84
References	86
Component's Specification and Data Sheets	88
Specification Sheet of MOC3021	88
Specification Sheet of Q4010L4	91
Datasheet ofPIC16F877A	94
Datasheet of Power Analyzer	104
Datasheet of 4X20 LCD	108
User's Guide	110
Pictures	111
Attachments	115
Sample Survey Form	116
Device Evaluation Analysis	131
Certificate of Proof Read	132
Curriculum Vitae	133