DE LA SALLE UNIVERSITY-DASMARIÑAS

College of Engineering, Architecture and Technology Electronics and Communications Engineering Department

DEVELOPMENT OF A COMPUTER-BASED DIGITAL ELECTRONICS TRAINING MODULE

In Partial Fulfilment of the Requirements for the Degree BACHELOR OF SCIENCE MAJOR IN ELECTRONICS AND COMMUNICATIONS ENGINEERING

> BONAGUA, Patrick James R. DAYAPAN, April D. LIBIRAN, Jian Karlo T. MELO, Mc Wallen M. TENORIO, Carlo Magno N.

> > **NOVEMBER 2011**

TITLE PAGE	
APPROVAL SHEET	i
TABLE OF CONTENTS	ïi
LIST OF TABLES	Vİİ
LIST OF FIGURES	ix
ACKNOWLEDGEMENT	xiv
ABSTRACT	xvi
CHAPTER 1	
1. THE PROBLEM AND ITS BACKGROUND STUDY	
1.1 INTRODUCTION	1
1.2 BACKGROUND OF THE STUDY	3
1.3 STATEMENT OF THE PROBLEM	5
1.4 CONCEPTUAL FRAMEWORK	7
1.5 SIGNIFICANCE OF THE STUDY	9
1.6 SCOPE AND LIMITATIONS	11
1.7 OPERATIONAL DEFINITION OF TERMS	15

CHAPTER 2

2. REVIEW OF THE RELATED LITERATURE	
2.1 FOREIGN LITERATURE	21
2.1.1 Research and Designing Procedures	21
2.1.2 Learning Improvement	24
2.1.3 Computer Simulation	25
2.1.4 Existing Laboratory Modules	26
2.2 LOCAL LITERATURE	30
CHAPTER 3	
3. RESEARCH METHODOLOGY	
3.1 RESEARCH METHODS	32
3.2 RESEARCH INSTRUMENTS	35
3.3 SYSTEM DESIGN	36
3.4 SYSTEM DESIGN COMPONENTS	39
3.5 GRAPHICAL USER INTERFACE AND CIRCUIT DESIGNS	47
3.6 DATA GATHERING PROCEDURE	78
3.6.1 Functionality Test	80
3.6.2 Acceptability Test	86

Development of a Computer-Based Digital Electronics Training Module iii

3.6.3 Reliability Test

86

CHAPTER 4

4.	PRESENTATION, ANALYSIS AND INTERPRETATION OF DATA	
	4.1 CIRCUIT DESIGNING AND CONSTRUCTION	88
	4.2 PROGRAMMING	89
	4.3 TRAINING MODULE BOARDS	90
	4.4 BOARD TEST RESULTS	92
	4.5 BURN-IN TEST RESULTS	93
	4.6 DATA AND RESULTS	95
	4.6.1 The Basic Logic Gates	95
	4.6.2 The Universal Gates	97
	4.6.3 Combinational Circuit	100
	4.6.4 BCD-to-Seven Segment Decoder	107
	4.6.5 Basic Arithmetic Logic Gates	109
	4.6.6 Asynchronous (Ripple) Counters	111
	4.6.7 Binary Multiplier	114
	4.5 DATA ANALYSIS	115

CHAPTER 5

5. PRESENTATION, ANALYSIS AND INTERPRETATION OF DATA	
5.1 SUMMARY	117
5.2 CONCLUSION	119
5.3 RECOMMENDATION	121
BIBLIOGRAPHY	124
APPENDIX	
APPENDIX A – PROJECT TIME TABLE OF ACTIVITIES	129
APPENDIX B – 74xx SERIES DATASHEETS	131
7400 Quad 2-Input NAND gates	132
7404 HEX Inverters	136
7402 Quad 2-input NOR gates	141
7407 HEX Buffers	145
7408 Quad 2-input AND gates	147
7432 Quad 2-input OR gates	150
7448 BCD to 7-segment decoder	153
7476 Dual JK Flip-flops	156
7486 Quad 2-input Exclusive-OR gates	160

Development of a Computer-Based Digital Electronics Training Module v

74244 Buffers/ Line Drivers/ Line Receivers	163
74266 Quad 2-input Exclusive NOR gates	166
APPENDIX C – DI-149 DATA ACQUISITION STARTER KIT USER'S MANUAL	168
APPENDIX D – MATERIALS AND COSTINGS	190
APPENDIX E – INSTRUCTIONS MANUAL	193
APPENDIX F – PROGRAM SOURCE CODE	198
APPENDIX G - SURVEY FORMS	224
APPENDIX H – THESIS DEFENSE LETTERS	261
APPENDIX I – PROOFREADER'S PROFILE	265
APPENDIX J – PROOFREAD CERTIFICATION	265
APPENDIX K – CURRICULUM VITAE	265

LIST OF TABLES

TABLES	PAGE
Table 3.5.4 Parallel Port Addressing Table	85
Table 4.6.1.1 YES GATE	97
Table 4.6.1.2 NOT GATE	98
Table 4.6.1.3 OR GATE	98
Table 4.6.1.4 AND GATE	99
Table 4.6.2.1 NAND GATE	99
Table 4.6.2.2 NOR GATE	100
Table 4.6.2.3 XOR GATE	100
Table 4.6.2.4 XNOR GATE	101
Table 4.6.3.1 1 st Combinational Circuit: All Switch Off	102
Table 4.6.3.2 2 nd Combinational Circuit: C1 Switch On	103
Table 4.6.3.3 3 rd Combinational Circuit: C2 Switch On	103
Table 4.6.3.4 4 th Combinational Circuit: C3 Switch On	104
Table 4.6.3.5 5 th Combinational Circuit: C1 and C2 Switch On	104
Table 4.6.3.6 6 th Combinational Circuit: C1 and C3 Switch On	105
Table 4.6.3.7 7 th Combinational Circuit: C2 and C3 Switch On	106
Table 4.6.3.8 8 th Combinational Circuit: All Switch On	107
Table 4.6.3.9 9 th Combinational Circuit: All Switch Off	107

Development of a Computer-Based Digital Electronics Training Module

Table 4.6.4.1 Common Anode BCD to Seven Segment Decoder	109
Table 4.6.4.2 Common Cathode BCD to Seven Segment Decoder	110
Table 4.6.5.1 Half Adder	111
Table 4.6.5.2 Full Adder	111
Table 4.6.5.3 Half Subtractor	112
Table 4.6.5.4 Full Subtractor	112
Table 4.6.6.1 Two-bit Counter	113
Table 4.6.6.2 Three-bit Counter	113
Table 4.6.6.3 Four-bit Up Counter	114
Table 4.6.6.4 Four-bit Down Counter	115
Table 4.6.8 Two Bit Binary Multiplier	116

LIST OF FIGURES

CONTENTS	PAGE
Figure 1.1 Conceptual Framework	7
Figure 1.2 Base Station Dimensions	12
Figure 1.3 Module Board Dimensions	13
Figure 2.1 Feedback's Advanced Logic Trainer CK341	26
Figure 2.2.1 Labvolt's Digital Logic Fundamentals Training Module	28
Figure 2.2.2 Labvolt's Digital circuit Fundamentals 1 Training Module	28
Figure 2.2.3 Labvolt's Digital circuit Fundamentals 2 Training Module	29
Figure 2.3 Alexan's Digital Trainer	30
Figure 3.1 Water-Fall Chart	33
Figure 3.2.1 System Block Diagram	36
Figure 3.2.2 External View of the Main Base Station	37
Figure 3.2.3 Internal View of the Main Base Station	38
Figure 3.3.1 Parallel Port Pin Configuration	40
Figure 3.3.2 Switching Circuit	41
Figure 3.3.3 USB port and cable	41
Figure 3.3.4 DATAQ's DI-149 USB Data Acquisition Starter Kit	42
Figure 3.3.5 Test Clips	43
Figure 3.3.6 74XX Series Integrated Circuits	44

Development of a Computer-Based Digital Electronics Training Module ix

Figure 3.3.7 64 Data Output Latching Circuit	45
Figure 3.4.1 Control 64 Latched Outputs Schematic Diagram	48
Figure 3.4.2 74LS32 OR Gate Pin Configuration	49
Figure 3.4.3 74LS08 AND Gate Pin Configuration	49
Figure 3.4.4 74LS07 YES Gate Pin Configuration	50
Figure 3.4.5 74LS04 NOT Gate Pin Configuration	50
Figure 3.5.1.1 Basic Logic Gates 1 Schematic Diagram	52
Figure 3.5.1.2 Basic Logic Gates 1 PCB Design	52
Figure 3.5.2.1 Basic Logic Gates 2 Schematic Diagram	53
Figure 3.5.2.2 Basic Logic Gates 2 PCB Design	53
Figure 3.5.3.1 Universal Gates NAND Schematic Diagram	54
Figure 3.5.3.2 Universal Gates NAND PCB Design	55
Figure 3.5.3.3 Universal Gate NOR Schematic Diagram	55
Figure 3.5.3.4 Universal Gate NOR PCB Design	56
Figure 3.5.4.1 Schematic Diagram for Combinational Circuits	57
Figure 3.5.4.1a Schematic Diagram for the 1^{st} Combinational Circuit	57
Figure 3.5.4.1b Schematic Diagram for the 2 nd Combinational Circuit	58
Figure 3.5.4.1c Schematic Diagram for the 3 rd Combinational Circuit	58
Figure 3.5.4.1d Schematic Diagram for the 4 th Combinational Circuit	58
Figure 3.5.4.1e Schematic Diagram for the 5 th Combinational Circuit	59
Figure 3.5.4.1f Schematic Diagram for the 6 th Combinational Circuit	59

Development of a Computer-Based Digital Electronics Training Module x

Figure 3.5.4.1g Schematic Diagram for the 7 th Combinational Circuit	60
Figure 3.5.4.1h Schematic Diagram for the 8 th Combinational Circuit	60
Figure 3.5.4.2 Combinational Circuits PCB Design	61
Figure 3.5.5.1a Half Adder Schematic Diagram	62
Figure 3.5.5.1b Full Adder Schematic Diagram	62
Figure 3.5.5.1c Half-Subtractor Schematic Diagram	62
Figure 3.5.5.1d Full-Subtractor Schematic Diagram	63
Figure 3.5.5.2 Basic Arithmetic Logic Gates PCB Design	63
Figure 3.5.6.1 BCD to Seven Segment Decoder Schematic Diagram	64
Figure 3.5.6.2 BCD to Seven Segment Decoder PCB Design	64
Figure 3.5.7.1 Two-Bit Binary Counter	66
Figure 3.5.7.2 Three-Bit Binary Counter	66
Figure 3.5.7.3 Four-Bit Binary Up-Down Counter	66
Figure 3.5.8.1 Binary Register Schematic Diagram	67
Figure 3.5.8.2 Binary Register PCB Design	67
Figure 3.5.9.1 Universal Shift Register Schematic Diagram	68
Figure 3.5.9.2 Universal Shift Register PCB Design	68
Figure 3.5.10.1 Two-Bit Binary Multiplier Schematic Diagram	69
Figure 3.5.10.2 Two-Bit Binary Multiplier PCB Design	69
Figure 3.5.11 12x12 Printed Circuit Board	70
Figure 3.5.12 Flat Iron	71

Development of a Computer-Based Digital Electronics Training Module xi

Figure 3.5.13 Prostyle 90 GSM High Quality Photopaper	71
Figure 3.5.14 Program Flowchart	74
Figure 3.5.15.1 GUI of the Basic Logic Gates 1 Experiment	75
Figure 3.5.15.2 GUI of the Basic Logic Gates 2 Experiment	76
Figure 3.5.15.3 GUI of the Universal Logic Gates Experiment	76
Figure 3.5.15.4 GUI of the Combinational Circuit Experiment	77
Figure 3.5.15.5 GUI of the Theorems of Boolean Algebra Experiment	77
Figure 3.5.15.6 GUI of the Basic Arithmetic Logic Gates Experiment	78
Figure 3.5.15.7 GUI of the BCD to 7 Segment Decoder Experiment	78
Figure 3.5.15.8 GUI of the Asynchronous Ripple Counter Experiment	79
Figure 3.5.15.9 GUI of the Binary Multiplier Experiment	79
Figure 3.6.1 Logic Probe Schematic Diagram	81
Figure 3.6.2 Test Probe PCB Design	81
Figure 3.6.3 Actual Test Probe	82
Figure 3.6.4.1 Error Message Dialog Box	83
Figure 3.6.4.2 Digital and Analog Multi-meters	84
Figure 3.6.4.3 Parallel Port Test Application	85
Figure 3.6.4.4 Demultiplexer Program	86
Figure 3.6.4.5 Square Wave Generator	87
Figure 3.6.4.6 Waveform Viewer	87
Figure 4.3.1 Module Board 1	92

Development of a Computer-Based Digital Electronics Training Module

Figure 4.3.2 Module Board 2	93
Figure 4.5.1 Start of the Burn-in Test	95
Figure 4.5.2 End of the Burn-in Test	96
Figure 4.7 Survey Graph	118

ABSTRACT

Research Title:	DEVELOPMENT OF A COMPUTER-BASED DIGITAL ELECTRONICS TRAINING MODULE
Proponents:	BONAGUA, PATRICK JAMES R. DAYAPAN, APRIL D. LIBIRAN, JIAN KARLO T. MELO, MC WALLEN M. TENORIO, CARLO MAGNO N.
Degree:	BACHELOR OF SCIENCE IN ELECTRONICS AND COMMUNICATIONS ENGINEERING
School:	DE LA SALLE UNIVERSITY - DASMARIÑAS
Year:	S.Y. 2011 – 2012
Date Completed:	NOVEMEBER 28, 2011
Subject Advisers:	ENGR. KATHLEEN ANNE G. VILLANUEVA ENGR. KATRINA CHEREEN B. ACAPULCO
Technical Adviser:	ENGR. JAN-MICHAEL M. ESPELETA
No. of Pages:	299

Development of a Computer-Based Digital Electronics Training Module xvi

Description: The research study deals with the development of a PCbased training module for digital electronics, particularly dealing with the theories and application of logic gates and logic devices. The experiments and exercises are computer-controlled wherein logic data of ones and zeroes can be manipulated with the use of a Graphical User Interface aided by Visual Basic.NET application. The training module consists of works on a parallel port device for data manipulation and it is powered by a Universal Serial Bus (USB) Cable. It also consists of a data acquisition instrument which is the DATAQ's DI-149 8-Channel USB Data Acquisition Starter Kit.