THE APPLICATION AND PERFORMANCE OF RICE HUSK ASH BLENDED CEMENT TO CONCRETE

A Thesis Presented to the Faculty of Civil Engineering College of Engineering, Architecture and Technology De La Salle University - Dasmariñas

> In Partial Fulfilment of the Requirements for the Degree of Bachelor of Science in Civil Engineering

> > Costa, Rofha B. Galicia, Charmagne V. Relatorres, Jayree C.

Abstract

Rice is the biggest agricultural product of the Philippines. Considered as organic waste material, its husk is casted off but adds to the waste disposal problem. In order to utilize this waste, the researchers have sought to reuse these into useful construction purposes. As emphasized in the objective of the study, the researchers determined the possibilities of mixing this treated ash to the usual concrete mix that produced tolerable strength for structural members or road pavements. The authors used three cement – RHA proportion, different sizes of coarse aggregate, and their different curing days. The specimens have been potted through a test to determine the compressive strength of each. Based on the results of tests conducted to the specimens, it proved a decreasing behaviour from Class AA to Class C mixture also from CRHA ratio of 90:10, 85:15 and 80:20. According to aggregate size, the results recorded a decreasing ultimate strength from 0.25, 0.50 and 1.0 inch. It is concluded that vast majority of the concrete with RHA passed the required compressive strength for certain structural concrete members. The data showed that the compressive strengths of concrete with RHA are tolerable.

Table of Contents

TITLE PAGE	i
APPROVAL SHEET	ii
ACKNOWLEDGEMENTS	iii
ABSTRACT	V
Chapter Page	
I. THE PROBLEM AND ITS BACKGROUND	
1.1 Introduction	1
1.2 Statement of the Problem	
1.3 Objectives of the Study	3
1.4 Scope and Limitations	4
1.5 Significance of the Study	
1.6 Theoretical Framework	6
Definition of TermsList of Used Acronyms	9
List of Used Acronyms	11
II. REVIEW OF THE RELATED LITERATURE AND STUDIES	12
III. METHODOLOGY 3.1 Preparation of Materials	
3.1 Preparation of Materials	15
3.2 Property of Materials	15
3.3 Mix Proportion	18
3.4 Tests Conducted	19
IV. PRESENTATION, ANALYSIS AND INTERPRETATION OF DATA	25
V. SUMMARY OF FINDINGS, CONCLUSIONS AND RECOMMENDATIONS	
5.1 Summary of Findings	55
5.2 Conclusions	56

	5.3 Recommendations	57
Apper	ndix A	
	Table A Concrete Proportion	59
	Table B Slump Values	59
	Table C Recommended Slumps for Various Types of Pours	59
	Table D Size and Gradation	60
	Table E-1.Specification of Materials for 7 Days Concrete	60
	Table E-2.Specification of Materials for 14 Days Concrete	61
	Table E-3.Specification of Materials for 28 Days Concrete	62
	Table E-4. Specification of Material in Plain Mixture at 7 Days	
	(Ordinary Concrete)	64
	Table E-5.Specification of Material in Plain Mixture at 14 Days	
	(Ordinary Concrete)	64
	Table E-6.Specification of Material in Plain Mixture at 28 Days	
	(Ordinary Concrete)	65
	Table F-1. Anova of Ratio and Days of Class AA of 0.25in.	
	Aggregate	65
	Table F-2.Anova of Ratio and Days of Class A of 0.25in.	
	Aggregate	66
	Table F-3. Anova of Ratio and Days of Class B of 0.25in.	
	Aggregate	66
	Table F-4. Anova of Ratio and Days of Class C of 0.25in.	
	Aggregate	67
	Table F-5. Anova of Ratio and Days of Class AA of 0.50in.	
	Aggregate	67
	Table F-6. Anova of Ratio and Days of Class A of 0.50in.	
	Aggregate	68
	Table F-7. Anova of Ratio and Days of Class B of 0.50in.	
	Aggregate	68

Table F-8.Anova of Ratio and Days of Class C of 0.50in.	
Aggregate	69
Table F-9.Anova of Ratio and Days of Class AA of 1in.	
Aggregate	69
Table F-10.Anova of Ratio and Days of Class A of 1in.	
Aggregate	70
Table F-11.Anova of Ratio and Days of Class B of 1in.	
Aggregate	70
Table F-12.Anova of Ratio and Days of Class C of 1in. Aggregate	71
Table G-1: Anova of Ratio and Aggregate Size of Class AA 7days	71
Table G-2: Anova of Ratio and Aggregate Size of Class A 7days	72
Table G-3: Anova of Ratio and Aggregate Size of Class B 7days	72
Table G-4: Anova of Ratio and Aggregate Size of Class C 7days	73
Table G-5: Anova of Ratio and Aggregate Size of Class AA 14days	74
Table G-6: Anova of Ratio and Aggregate Size of Class A 14 days	74
Table G-7: Anova of Ratio and Aggregate Size of Class B 14days	75
Table G-8: Anova of Ratio and Aggregate Size of Class C 14days	75
Table G-9: Anova of Ratio and Aggregate Size of Class AA 28days	76
Table G-10: Anova of Ratio and Aggregate Size of Class A 28days	76
Table G-11: Anova of Ratio and Aggregate Size of Class B 28days	77
Table G-12: Anova of Ratio and Aggregate Size of Class C 28days	77
Table H-1: Anova of Ratio and Class Mixture of 7 days 0.25in.	
Aggregate	78
Table H-2: Anova of Ratio and Class Mixture of 7 Days 0.50in.	
Aggregate	78
Table H-3: Anova of Ratio and Class Mixture of 7 Days 1in.	
Aggregate	79
Table H-4: Anova of Ratio and Class Mixture of 14 Days 0.25in.	
Aggregate	79
Table H-5: Anova of Ratio and Class Mixture of 14 Days 0.50in.	
Aggregate	80

Table H-6: Anova of Ratio and Class Mixture of 14 Days 1in.	
Aggregate	81
Table H-7: Anova of Ratio and Class Mixture of 28 Days 0.25in.	
Aggregate	81
Table H-8: Anova of Ratio and Class Mixture of 28 Days 0.50in.	
Aggregate	82
Table H-9: Anova of Ratio and Class Mixture of 28 Days 1in.	
Aggregate	82
Table I-1: Anova of Days and Aggregate Size of Class AA with 90:10	
Proportion	83
Table I-2: Anova of Days and Aggregate Size of Class A with 90:10	
Proportion	83
Table I-3: Anova of Days an <mark>d</mark> Aggregate Size of Class B with 90:10	
Proportion	84
Table I-4: Anova of Days and Agg <mark>r</mark> egate Size of Class C with 90:10	
Proportion	84
Table I-5: Anova of Days and Aggregate Size of Class AA with 85:15	
Proportion	85
Table I-6: Anova of Days and Aggregate Size of Class A with	
85:15 Proportion	85
Table I-7: Anova of Days and Aggregate Size of Class B with 85:15	
Proportion	86
Table I-8: Anova of Days and Aggregate Size of Class C with 85:15	
Proportion	87
Table I-9: Anova of Days and Aggregate Size of Class AA with 80:20	
Proportion	87
Table I-10: Anova of Days and Aggregate Size of Class A with 80:20	
Proportion	88
Table I-11: Anova of Days and Aggregate Size of Class B with 80:20	
Proportion	88

Table I-12: Anova of Days and Aggregate Size of Class C with 80:20	
Proportion	89
Table J-1: Anova of Days and Class Mixture of 90:10 Proportion	
of 0.25in. Aggregate	89
Table J-2: Anova of Days and Class Mixture of 85:15 Proportion	
of 0.25in. Aggregate	90
Table J-3: Anova of Days and Class Mixture of 80:20 Proportion	
of 0.25in. Aggregate	90
Table J-4: Anova of Days and Class Mixture of 90:10 Proportion	
of 0.50in. Aggregate	91
Table J-5: Anova of Days and Class Mixture of 85:15 Proportion	
of 0.50in. Aggregate	91
Table J-6: Anova of Days and Class Mixture of 80:20 Proportion	
of 0.50in.Aggregate	92
Table J-7: Anova of Days and Class Mixture of 90:10 Proportion	
of 1in.Aggregate	92
Table J-8: Anova of Days and Class Mixture of 85:15 Proportion	
of 1in.Aggregate	93
Table J-9: Anova of Days and Class Mixture of 80:20 Proportion	
of 1in. Aggregate	94
Table K-1: Anova of Aggregate Size and Class Mixture of 7 days	
of 90:10 Proportion	94
Table K-2: Anova of Aggregate Size and Class Mixture of 7 days	
of90:10Proportion	95
Table K-3: Anova of Aggregate Size and Class Mixture of 7 days	
of 90:10Proportion	95
Table K-4: Anova of Aggregate Size and Class Mixture of 14 days	
of 90:10Proportion	96
Table K-5: Anova of Aggregate Size and Class Mixture of 14 days	
of 90:10Proportion	96

Table K-6: Anova of Aggregate Size and Class Mixture of 14 days	
of 90:10Proportion	97
Table K-7: Anova of Aggregate Size and Class Mixture of 28 days	
of 90:10Proportion	97
Table K-8: Anova of Aggregate Size and Class Mixture of 28 days	
of 90:10Proportion	98
Table K-9: Anova of Aggregate Size and Class Mixture of 28 days	
of 90:10Proportion	99
Computation for Property of Fine Aggregates	99
Computation for Property of Coarse Aggregate	100
Computation for Size and Gradation	101
Computations of Volume per Specimen	102
Table L: Application of Concrete based on its Compressive Strength	105
Interpolation of Data	106
Appendix B	
Thesis Title Approval Sheet	125
Test Report on Compressive Strength of 7 Days	
Plain Concrete Cylinder	126
Test Report on Compressive Strength of 14 Days	
Plain Concrete Cylinder	127
Test Report on Compressive Strength of 28 Days	
Plain Concrete Cylinder	128
Test Report on Compressive Strength of 7 Days	
Experimented Concrete Cylinder	129
Test Report on Compressive Strength of 14 Days	
Experimented Concrete Cylinder	131
Test Report on Compressive Strength of 28 Days	
Experimented Concrete Cylinder	133
Report of Analysis for Rice Husk Ash	135

Report of Analysis for Rice Husk Ash from	
Restored Energy Development	136
Approval Request Letter	137
Appendix C	
Documentation (photo)	139
Bibliography	144

List of Charts

Chart 1.1 Flow Chart	7
Chart 3.1 Production Chart	2

List of Tables

Table 3.1: Specification of Materials for Concrete Mixing with RHA	22
Table 3.2: Specification of material for plain mixture (Ordinary Concrete)	24
Table 4.1: Summary of Specific Gravity and Absorption of Fine Aggregate	25
Table 4.2: Summary of Specific Gravity and Absorption of Course	
Aggregate	26
Table 4.3: Size and Gradation	27
Table 4.4: Ultimate Strength of 7 days Plain Concrete	28
Table 4.5: Ultimate Strength of 14 Days Plain Concrete	29
Table 4.6: Ultimate Strength of 28 Days Plain Concrete	30
Table 4.7: Ultimate Strength per Specimen of 7 Days Experimented	
Concrete	30
Table 4.8: Ultimate Strength per Specimen of 14 Days Experimented	
Concrete	32
Table 4.9: Ultimate Strength per Specimen of 28 Experimented	
Concrete	33
Table 4.10: Data Interpolation from 90:10 and 80:20 Proportions of	
Class AA .25 in Aggregate Size	39
Table 4.11: Application and Performance of 7 Days Experimented	
Concrete with 0.25in. Aggregate	40
Table 4.12: Application and Performance of 7 Days Experimented	
Concrete with 0.5in. Aggregate	42
.Table 4.13: Application and Performance of 7 Days Experimented	
Concrete with 1in. Aggregate	44
Table 4.14: Application and Performance of 14 Days Experimented	
Concrete with 0.25in. Aggregate	45
Table 4.15: Application and Performance of 14 Days Experimented	
Concrete with 0.50in. Aggregate	47

Table 4.16: Application and Performance of 14 Days Experimented	
Concrete with 1in. Aggregate	49
Table 4.17: Application and Performance of 28 Days Experimented	
Concrete with 0.25in. Aggregate	50
Table 4.18: Application and Performance of 28 Days Experimented	
Concrete with 0.50in. Aggregate	52
Table 4.19: Application and Performance of 28 Days Experimented	
Concrete with 0.50in. Aggregate	53

