CORRELATION BETWEEN PAVEMENT CONDITION AND EQUIVALENT

SINGLE AXLE LOADING IN CAVITE-BATANGAS ROAD

A Thesis Presented to the Faculty of Civil Engineering College of Engineering, Architecture and Technology De La Salle University-Dasmariñas

> In Partial Fulfillment of the Requirements for the Degree of Bachelor of Science in Civil Engineering

> > Alcaraz, Paolo Scott L. Beredo, Christine A. Nepomuceno, Raymond M. Ruiz, Jeffrey L.

> > > March 2011

ABSTRACT

Traffic loading is one of the factors that affect the deterioration or the condition of the road pavement. This study was conducted to determine the relationship between loading of trucks and pavement condition at Cavite-Batangas road in Cavite. In this study the traffic counts and pavement conditions of Cavite-Batangas Road for five consecutive years, 2006, 2007, 2008, 2009 and 2010 only were considered. After analyzing all the data, both given and computed, the researchers have concluded that the actual ESAL exceeded the DPWH design criteria based ESAL for the year 2006, 2007 and 2008. The highest percent difference was 18.67% which was for the year 2006. The relationship between pavement condition and ESAL was determined through regression model and was given by the equation $p = 2x10^{-5}a - 0.628$ where "p" is the pavement serviceability rating while "a" is the number of single axle load. The equation means that for every 81,400 ESAL there would be an increase in the pavement serviceability rating. It would take 5,535,200 ESAL for a road to degrade from good to bad condition, if other factors such as weather, condition of the subgrade and materials used were not considered.

Table of Contents

Tittle Page	
Approval Sheet	i
Acknowledgement	ii
Abstract	iii
Chapter 1 Background of the Study	
1.1 Introduction	1
1.2 Statement of the Problem	3
1.3 Objective of the Study	4
1.4 Scope and Delimitation	4
1.5 Significance of the Study	5
1.6 Study Framework	6
1.7 Definition of Terms	7
1.8 List of Acronyms	8
Chapter 2 Review of Related Literature	
2.1 Basic Facts about Pavements	9
2.2 Pavement Types	10
2.3 Traffic Loading Analysis	11
2.4 Pavement Condition Rating	12
Chapter 3 Methodology	
3.1 Data Gathering	16
3.2 Computation and Analysis	16
3.3 Statistical Tool	17

	Data Dua a sutation	A		
Chanter 4 I	Data Presentation	Analysis	and intel	nretation
	bala ricocritation,	7 11 101 9 515		protation

4.1 Design	18
4.2 Data Analysis	19
4.3 Pavement Condition	29
Chapter 5 Summary, Conclusion and Recommendation	
5.1 Summary of Findings	35
5.2 Conclusion	36
5.3 Recommendation	37
Bibliography	38
Appendices	
Appendix-A: Typical Cross Section of Flexible Pavement	40
Appendix-B: AASHTO Load Equivalency Factor	41
Appendix-C: Manual Classified Traffic Count	
Single Direction & Lane Count Form	43
Appendix-D: ESAL Factor Computation	44
Appendix-E: Actual ESAL Computation	45
Appendix-F: Design ESAL Computation	46
Appendix-G: Regression Model Computation	47
Appendix-H: Visual Road Assessment Form –	
Asphalt Pavement (2006)	49
Appendix-I: Visual Road Assessment Form –	
Asphalt Pavement (2007)	50

Appendix-J: Visual Road Assessment Form –	
Asphalt Pavement (2008)5	1
Appendix-K: Visual Road Assessment Form –	
Asphalt Pavement (2009)5	52
Appendix-L: Visual Road Assessment Form –	
Asphalt Pavement (2010)5	;3
Appendix-M: Received Request Letter5	4
Appendix-N: Manual Classified traffic Count	
For Cavite-Batangas Road (2006)5	6
Appendix-O: Manual Classified traffic Count	
For Cavite-Batangas Road (2007)6	54
Appendix-P: Manual Classified traffic Count	
For Cavite-Batangas Road (2008)7	'2
Appendix-Q: Manual Classified traffic Count	
For Cavite-Batangas Road (2009)8	0
Appendix-R: Manual Classified traffic Count	
For Cavite-Batangas Road (2010)8	8
Appendix-S: Proofread Certificate9	6

List of Tables

Table 4.1.1 Design ESAL in Cavite-Batangas Road for the year	
2006 to 2010	18
Table 4.2.1 Daily Traffic Count for the year 2006	20
Table 4.2.2 Daily Traffic Count for the year 2007	21
Table 4.2.3 Daily Traffic Count for the year 2008	22
Table 4.2.4 Daily Traffic Count for the year 2009	23
Table 4.2.5 Daily Traffic Count for the year 2010	24
Table 4.2.6 Equivalent Single Axle Load Factors	26
Table 4.2.7 Equivalent Single Axle Load for year 2006	26
Table 4.2.8 Equivalent Single Axle Load for year 2007	27
Table 4.2.9 Equivalent Single Axle Load for year 2008	27
Table 4.2.10 Equivalent Single Axle Load for year 2009	27
Table 4.2.11 Equivalent Single Axle Load for year 2010	27
Table 4.2.12 Comparison between Actual and Design	
Equivalent Single Axle Load	28
Table 4.3.1 Pavement Condition Rating	30
Table 4.3.2 Road Condition of the 1km strip for year 2006	31
Table 4.3.3 Road Condition of the 1km strip for year 2007	31
Table 4.3.4 Road Condition of the 1km strip for year 2008	31
Table 4.3.5 Road Condition of the 1km strip for year 2009	31
Table 4.3.6 Road Condition of the 1km strip for year 2010	32
Table 4.3.7 Actual ESAL and Pavement Condition Rating	
For each year	

List of Figures

Figure 1: Study Framework	6
Figure 2: Typical Cross-section of Flexible Pavement	10
Figure 3: Methodological Framework	15
Figure 4: Regression Model between Pavement	
Condition and ESAL	33

