Partial Replacement of Crumbed Rubber Tire as Fine Aggregate on Mortar

A Thesis Proposal Presented to The Faculty of the College of Engineering, Architecture, and Technology Civil Engineering De La Salle University - Dasmariñas

In Partial Fulfillment
Of the Requirements for the Degree
Bachelor of Science in Civil Engineering

Jan Erickzon M. Evangelista Jayson L. Tan Fahad R. Aquino

October 2013

ABSTRACT

The study entitled, Crumbed Rubber Tire for Fine Aggregate on a Mortar aims to maximize the use of waste material specially the rubber tire. Nowadays, the demand for transportation is increasing, for this reason the number of used rubber tire is also increasing and the disposal of rubber tire is becoming a problem. Used rubber tire can be a threat in the environment especially when it is burned causing air pollution. There are only limited ways to recycle rubber tire, One purpose of this study is to find another effective way to use the rubber tire. The researcher also wants to find an alternative material for fine aggregates that can be used in making mortar. Another is to give knowledge to others about the use of Crumbed Rubber Tire (CRT) as fine aggregates.

In this study, the researchers compare the flexural strength, linear expansion, and acoustics factors of the mortar with different percentage of CRT that substitute to sand as fine aggregates. The data shows that the flexural strength was inversely proportional to the percentage of the CRT. There was no difference in linear expansion between mortars with and without CRT. On sound level it shows that mortar with CRT will absorb the sound.

TABLE OF CONTENTS

	P	age	
Chapter 1		•••	1
1.1 Intro	oduction		1
1.2 Stat	ement of the Problem		3
1.3 Obj	ectives of the Study		3
1.4 Sco	pe and Limitations of the Study		4
1.5 Sign	nificance of the Study		5
1.6 Con	nceptual Framework		6
1.7 Def	inition of Terms		7
Chapter 2	<u>.</u>	•••••	8
2.1	Mortar.	• • • • • • • • • • • • • • • • • • • •	8
2.2	Cement		. 8
2.3	Waste Rubber Tire	•••••	8
	2.3.1 Properties of Rubber Tire.		9
	2.3.1.1 Unit weight		9
	2.3.1.2 Toughness and Failure	• • • • • •	.10
	2.3.1.3 Impact Resistance and Heat Insulation	• • • • • •	.10
	2.3.1.4 Water Absorption		11
	2.3.2 Effects of Rubber on Concrete		11
2.4	Testing for Rubber on Mortar.		12
	2.4.1 Flavural Test		12

	2.4.2	Thermal Linear Expansion.	13			
	2.4.3	Sound Insulation Test.	14			
	2.5	Acoustic	14			
Chapter 3	•••••		16			
3.1	Method	dological Framework	16			
3.2	Materia	als and Preparations	17			
3.3	Mixing	g of Mortar	17			
3.4	Testing	3. MFORMATON	17			
	3.4.1	Flexural Test.	17			
	3.4.2	Sound Level Test	18			
	3.4.3	Linear Expansion Test.	18			
	3.4.4	Mixing Mortar for Other Test	18			
	3.5	Cost Analysis.	19			
	3.6	Statistical Analysis.	19			
Chapter 4	•••••		20			
4.1	Flexura	al Strength Test Result	20			
4.2	Percen	tage Difference	23			
4.2	Slump	Slump Test				
4.3	Linear	Linear Expansion				
4.4	Sound	Level Test Result	27			

4.5	Results and Criteria of the Test	28
4.6	Cost and Other Comparisons,	29
4.7	Analysis	29
Chapter 5		
5.1 Findings and observations		
5.2 Conclusions.		
5.3 Recommendations		
Appendixes.	NFORMATION PLACE	32
Noise	e Reduction Table (appendix A)	32
ANC	VA (appendix B)	33
Desig	gn strength (appendix C)	35
Pictu	res (appendix D)	36
	PARING OF MATERIALS	36
MIX	ING OF MORTAR BEAMS	37
SLU	MP TEST & FLEXURAL STRENGTH TEST	38
MIX	ING FOR LINEAR EXPANSION AND SOUND TEST	39
SOU	ND TEST AND LINEAR EXPANSION TEST	39
Bibliography		

List of Figures

Figure 1.6 Conceptual Framework.	6
Figure 3.1 Methodological Framework.	16
Figure 4.1 % of CRT vs flexural strength.	21
Figure 4.2 % of CRT vs Weight	22

