Comparative Analysis on the Effectiveness of Mussel Shell Used as Fine Aggregate and Used as Ash in the Compressive Strength of Mortar

> A Thesis Proposal Presented to the Faculty of Civil Engineering College of Engineering, Architecture and Technology De La Salle University – Dasmariñas Dasmariñas, City

In Partial Fulfillment of the Requirements for the Course Bachelor of Science in Civil Engineering

> Andres, Alexander V. Matanguihan, Lorraine Paule A. Ocampo, Joana Marie E.

> > October 2013

Table of Contents

Title Page	
Table of Contents	i
Abstract	iv
Acknowledgements	V
Chapter 1 : The Problem and Its Background	
1.1 Introduction	1
1.2 Statement of the Problem	2
1.3 Research Objectives	3
1.4 Significance of the Study	4
1.5 Scope and Limitations	6
1.6 Conceptual Framework	7
1.7 Definition of Terms	8
Chapter 2 : Review of Related Literature	
2.1 Mussel (PernaViridis)	10
2.1.1 Mussel Shell	10
2.2 Composition of Mortar	11
2.2.1 Cement	11
2.2.1.1 Portland Cement	12
2.2.2 Fine Aggregate	12
2.3 Application of Mortar	13
2.3.1 Concrete Hollow Blocks	13

2.4 Alternative Raw Materials For Cement	14
2.4.1 Coconut Husk Ash	14
2.4.2 Corn Cob Ash	15
2.4.3 Peanut Shell Ash	15
2.5 Alternative Raw Materials for Fine Aggregates	16
2.5.1 Crushed Granite Fine	16
2.5.2 Oyster Shell	16
2.6 Methods of Testing	17
2.6.1 Compression test	17
2.6.1.1 ASTM C109	17
2.6.2 Slump Test	17
2.7 Formulas	18
2.7.1 Density	18
2.7.2 Specific Gravity	18
2.8 Statistical Tools	19
2.8.1 Microsoft Excel	19
2.8.2 Graphmatica	19
Chapter 3 : Methodology	
3.1 Methodological Framework	20
3.2 Gathering of Data	22
3.3 Procedure	22
3.3.1 Compression Test	22

3.3.2 Slump Test	24
3.4 Instrumentation	25
3.5 Interpretation and Presentation of Data	26
Chapter 4 : Presentation, Analysis and Interpretation of Data	
4.1 Testing Results	27
4.2 Statistical Analysis	34
Chapter 5 : Conclusions and Recommendations	
5.1 Results and Findings	40
5.2 Conclusion	40
5.3 Recommendation	41
References	vii
Appendices	ix
- Appendix A: Computation Of Components Per Cube	Х
- Appendix B: Amount Of Components Per Design Mix	xviii
- Appendix C: Computation Of Density Of Mixture	xxi
- Appendix D : Photos Taken In The Experiment	XXV
- Appendix E : Mussel Shell Ash Specimens	xxvii
- Appendix F : Mussel Shell Fine Aggregate Specimens	xxiv
- Appendix G : Compressive Strength Test Result Of	XXX
Mussel Shell Ash Mix Ratio	
- Appendix H : Compressive Strength Test Result Of	xxxii
Mussel Shell Fine Aggregate Mix Ratio	
- Appendix I : ASTM Compressive Strength Requirement	xxxiii

ABSTRACT

Mussel, a bivalve which is abundant in the Philippines, is considered one of the most common shellfish consumed by the people. The shells that are left of are non-biodegradable and their indiscriminate disposal can lead to land and water pollution. In this study, mussel shell was used as partial replacement for fine aggregate and cement in the creation of mortar. It was crushed in order to produce fine aggregates and was incinerated in order to produce ash. Different set of specimens with different design mixes were created. In the first part of the study, mussel shell fine aggregate (MSFA) served as partial replacement for sand without partially replacing cement and in the second part, mussel shell ash (MSA) served as partial replacement for cement without partially replacing sand. Specimens with no replacement were created to serve as the control. Both MSFA and MSA were used in 10%, 20% and 30% replacement. Three specimens per percentage replacement were created in order to obtain accurate results. After the specimens had been created, they were subjected to compressive strength test. It was found out that MSFA gave a positive result at 10% partial replacement while MSA didn't pass the strength of the control. It was also observed that while the percentage of MSFA is increased, the mixture becomes more watery which was proven by the slump test which gave an increasing slump as the percentage was increased. Densities of the design mixes were also obtained and they showed that as MSA and MSFA increased, density of the mixture decreased which means that the mixture becomes more permeable and an increase in permeability means a decrease in thermal conductivity.