Design of a Water Supply System at Brgy. Harasan Indang, Cavite

A Thesis Presented to Faculty of Civil Engineering College of Engineering, Architecture and Technology De La Salle University – Dasmarinas Dasmariñas, City

In Partial Fulfillment of the Requirements for the Degree of Bachelor of Science in Civil Engineering

> Bryan Mar B. Badilla Ryann V. Lerio Karen Faye R. Marero

> > March 2014

TABLE OF CONTENTS

	Page No.
Approval Sheet	ii
Table of Contents	iii
Abstract	viii
Acknowledgement	ix
List of Figures	
1.1 Conceptual Framework	7
3.1 Methodological Framework	22
4.1 Spring to Tank Labels	33
4.2 Sizes of Pipes in Distribution System	34
4.3 Final Design Lay-out with Public Faucet	35
4.4 Sample of Epanet Run Simulation	36
4.5 From Siloy Spring to Barangay Harasan	37
4.6 Barangay Harasan Road Intersection	38
4.7 Junction 3 to Junction 6	38
4.8 Junction 7 to Junction 10	39
4.9 Junction 10 to Junction 15	39
4.10 Graph of Flow for Selected Links	40
4.11 Graph of Unit Head Loss for Selected Links	40
4.12 Graph of Pressure (m) for Selected Nodes	41
4.13 Graph of Pressure (m) for Storage Tank	41
4.14 Graph of Pressure Head after PRV inserted	42

	4.15 Sample of Spring Box Design		
	4.16 Design and Properties of the Existing Spring box		
	C.1 G1	raph of NRW Pattern	78
	C.2 G1	raph of Water Consumption Pattern	78
List of	f Table	S	
	4.1 Ju	nction Status at 0900 hours	43
	4.2 Lii	nk Status at 0900 hours	44
	4.3 Ju	nction Status at 1000 hours	45
	4.4 Liı	nk Status at 1000 hours	46
	4.5 Ju	nction Status at 1900 hours	47
	4.6 Lii	nk Status at 1900 hours	48
	4.7 Ju	nction Status at 2600 hours	49
	4.8 Ta	nk Properties	50
4.7 Junction Status at 2600 hours4.8 Tank Properties4.9 Pipe Properties			51
	C.1 No	on Revenue Water Multiplier	78
	C.2 Di	urnal Multiplier	78
	C.3 St	arveying Values	79
Chapt	ter 1	The Problem and Its Background	
	1.1	Introduction	1
	1.2	Statement of the Problem	3
	1.3	Objectives of the Study	4
	1.4	Importance and Significance of the Study	5
	1.5	Scope and Limitations of the Study	6

1.6	Conceptual Framework	7
1.7	Definition of Terms	8
Chapter 2	Review of Related Literature	
2.1	Groundwater	9
	2.1.1 Well	9
2.2	Spring	10
	2.2.1 Spring Box	11
2.3	Level II (Water System with Public Faucet or Communal Faucet)	11
2.4	Gravity Type Water Distribution System	12
2.5	Pumping with Storage System	12
2.6	Pipes	13
	2.6.1 Pressure Deducing Valve	13
2.7	Transmission and Distribution System	14
	2.7.1 EPANET Software	14
	2.7.2 Minor Loss	15
	2.7.3 Head Loss	15
	2.7.4 Hazen Williams Coefficient	16
	2.7.5 Pressure	17
2.8	Design of Reservoir	18
	2.8.1 Elevated Reservoir	19
2.9	Pump	20
Chapter 3	Methodology	
3.1	Methodological Framework	21

3.2	Data Gathering		
	3.2.1	Topographic Map	23
	3.2.2	Barangay Map	23
	3.2.3	Growth Rate	23
	3.2.4	Site Investigation of the Source	23
	3.2.5	Water Supply Design Manual	24
3.3	Data A	Analysis	24
	3.3.1	Determining the Source Capacity (SPRING)	24
	3.3.2	Calculating of Water Demand of the Barangay Harasan	24
	3.3.3	Calculation of Head Losses, Minor Loss, Pressure and	
		Pressure Head	26
	3.3.4	Determination of Required Capacity of the Reservoirs/Ta	ınk 27
	3.3.5	Calculation of Pump Capacity	27
3.4	Estim	ated Source Capacity	28
3.5	Estim	ated Design of Storage Tank/Spring Box	28
3.6	Recor	nmended Pipe Sizes of the Water Supply System	28
Chapter 4	Data	Presentation and Analysis	
4.1	Spring	g Yield	29
4.2	2 Spring	g Box	29
4.3	8 Water	Demand	29
4.4	4 Scope	e of Works	30
4.5	5 EPAN	IET Software	30
4.6	6 Exam	ination of Hydraulic Run Results	32

Chapter 5	Conclusion and Recommendation	
5.1	Summary	54
5.2	Conclusion	55
5.3	Recommendations	56
Appendices		
А	Computations	58
В	Using EPANET	61
С	Tables	78
D	Requirements for Detailed Engineering Design	82
Е	Maps	87
F	Design Criteria and Standards	93
G	Photo Documentation	95
н	Letters and Forms	98
Bibliography		100

ABSTRACT

The study was conducted to design a Water Supply System in Barangay Harasan Indang Cavite to improve the water supply at the barangay. Specifically; it aimed to determine the sustainability and yield of spring as primary source of the water supply in the barangay; to determine the volume of the storage to supply the water demand of the barangay; and to layout of a pipe distribution system to supply the water demand of the whole barangay.

Based on the yield of the spring determined by the researchers at the summer time of 2013, the spring exceeded the average water demand of barangay Harasan which means the water source is stable. The tank sized was adjusted so that it could sustain its supply for almost a day and minimizes the operation of the pump. The researchers conclude that using a larger diameter of pipe minimize the head loss in pipe and pressure head at nodes. The researchers used 200mm diameter of pipe from the source of water to tank and used pump to distribute it to higher elevation. PRV (Pressure Reducing Valve) was inserted in the junctions to minimize the pressure head in remotest end of the network. Pipe sizes were decreased at distribution system at the barangay, 75mm, 100mm and 150mm diameter were used. The researchers observed that the greater the demand in every junction, the larger the pipe must be used.

Since the research was well accomplished and already has the solutions to the main problem of the said area, the proposed paper answered the main objective.

The study was conducted from June 2013 to February 2014.