Design of Rainwater Harvesting System as an Additional Water Source for Irrigation at De La Salle University-Dasmariñas

A Thesis Study Presented to the Faculty of Civil Engineering College of Engineering, Architecture and Technology De La Salle University-Dasmariñas Dasmariñas City

In Partial Fulfilment of the Requirements for the Degree of Bachelor of Science in Civil Engineering

Angeles, Prince Edbert M. Braceros, Artgyle A. Luna, Vanjewis A.

ABSTRACT

Groundwater is a depletable resource, and its continued over-extraction has both economic and environmental consequences. However, these consequences can be lessen, by means of continually improving the environmental performances and concerns through initiative and creative ideas. This paper will help the community to improve more its environmental performance by minimizing its impact to the environment.

This research, "Design of Rainwater Harvesting System as an Additional Water Source for Irrigation at De La Salle University-Dasmariñas" is generally composed of three divisions: assessment of the problem and environmental promises, design of the rainwater harvesting system, and its estimate.

First division is the assessment of the groundwater depletion and the university's goal of minimizing, if not eradicating its negative impact to the environment.

Second division is the design of the system. This part is where the researchers made use of rainwater as an additional water source, making the design effective, to the extent of researchers' knowledge.

Third division is the estimate which is composed of the cost estimate of the whole system, equivalent cost of the system, and environmental savings using the new system.

This research paper will not only help the De La Salle University-Dasmariñas on its vision-mission for the environment, but also the environment itself will benefit which is the main focus of the paper.

Table of Contents

Abstract

Acknowledgement

Chapter 1: The Problem and Its Background	1
1.1 Introduction	1
1.2 Statement of the Problem	3
1.3 Objectives of the Study	3
1.4 Importance and Significance of the Study	4
1.5 Scope and Limitations	5
1.6 Conceptual Framework	6
Chapter 2: Review of Related Literature	7
2.1 Rainwater Harvesting	7
2.1.1 First Flush Diverters and Inlet Protection	8
2.1.2 Storage Tank	10
2.1.2.1 Size of Storage Tanks	11
2.2 Groundwater	14
2.2.1 Groundwater Assessment and Depletion	15
2.2.2 Depletion of Groundwater Level in Cavite	16
2.2.3 Groundwater Data from Dasmariñas Water District	17
2.2.4 Report of Groundwater Subsidence	18
2.2.5 Potential Water Resource by 2025	22
2.3 Ornamental Plants	24

2.4 Ornamental Landscaping	25
2.5 Water Requirements for Ornamental Plants	26
2.6 De La Salle University-Dasmariñas "Our Green Promise"	27
2.7 Precipitation	28
2.8 Rainfall Intensity	29
2.9 Pumping with Storage System	30
2.10 Pump	30
2.11Pipes	31
2.12 Bernoulli's Energy Theorem	31
2.13 Head Loss	31
Chapter 3: Methodology	34
3.1 Methodological Framework	34
3.2 Data Gathering	36
3.3 Data Analysis	37
Chapter 4: Analysis of Data and Results	38
4.1 Rainfall Intensity Data	38
4.2 Catchment Area	41
4.3 Rainwater Supply	41
4.4 Water Demand for Irrigation	42
4.5 Supply over Demand Ratio and Rainwater Tank Sizing	43
4.6 Water Demand for Ornamental Plant	44
4.7 Rainwater Tank Sizing	45
4.8 Tank Dimensions and Cost	46
4.9 Irrigable Land Area, Piping Systems and Pump	50
4.10 First Flush Diverter	75

4.11 Monthly Supply and Demand	77
4.12 Additional Gutter and Downspout	84
4.13 Cost Estimates of Materials and Maintenance	84
4.14 Cost and Technical Benefit Analysis, and Return on Investment	85
Chapter 5: Summary, Conclusions, and Recommendations	88
5.1 Summary	88
5.2 Conclusion	89
5.3 Recommendation	90
ANNEXES	91
ANNEX A: Computations	91
ANNEX B: Tables	117
ANNEX C: Maps and Building Plans	139
ANNEX D: First Flush Diverter and Pump	147
ANNEX E: Letters and Forms	149
ANNEX F: Photo Documentation	153
REFERENCES	154