Integrated Weather Condition Monitoring System

A Thesis Presented to the Faculty of Computer Engineering College of Engineering, Architecture and Technology De La Salle University – Dasmariñas Dasmariñas City, Cavite

In Partial Fulfillment of the Requirements for the Degree of

Bachelor of Science in Computer Engineering

by

Ken S. Villanueva

Paul Anthony B. Gabog

Leng Ann B. Goh

October 2014

TABLE OF CONTENTS

APPROVAL SHEET	i
TABLE OF CONTENTS	ii
LIST OF FIGURES	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
Chapter 1: THE INTRODUCTION AND THE PROBLEM	
1.1 Introduction	1
1.2 Background of the Study	2
1.3 Statement of the Problem	3
1.4 Objectives of the Study	4
1.4.1 General Objective of the Study	4
1.4.2 Specific Objectives of the Study	5
1.5 Importance of the Study	5
1.6 Scope and Limitations of the Study	6
1.7 Conceptual Framework	7
1.8 Definition of Technical Terms	8

Chapter 2: REVIEW OF THE RELATED LITERATURE

2.1 Local Literature	13
2.1.1 Predict Project	13

2	2.1.2 Climate Change	14
2	2.1.3 National Disaster Risk Reduction	15
2.2 Fore	ign Literature	18
2	2.2.1 History of NOAA	18
2	2.2.2 NOAA: Operational Weather Satellites	20
2	2.2.3 Canto Cumulus: History	21
2	2.2.4 Canto Cumulus, an asset cover	23
2	2.2.5 What is GRIB?	27
2	2.2.6 Negretti and Zambra: Zambretti Forecasting System	28
2	2.2.7 Short-Range Local Forecasting with a Digital Barograph	
	using an Algorithm based on the Zambretti Forecaster	30
2	2.2.8 What is Xively?	31
2	2.2.9 Quantitative Forecast	31
2	2.2.10 Descriptive Forecast	34
2	2.2.11 Methods and Assessment of Extreme Weather	
	and Climate Events	35
2	2.2.12 Characterizing Uncertainty of Climate Projections	36

Chapter 3: METHODOLOGY

3.1 Research	Design	38
3.2 Research	Instruments	41
3.2.1	Electronic Data Acquisition	41
3.2.2	Literature Survey	41

3.2.3 Test Methodology	42
3.3 Design and Experimentation	42
3.3.1 Weather Sensors and Data Collection	42
3.3.2 Weather Analysis and Short Ranged Weather Forecasting	
and its Parameters	43
3.3.2.1 Wind Speed and direction	43
3.3.2.2 Barometric Atmospheric Pressure	44
3.3.2.3 Quantitative Precipitation Analysis	45
3.3.2.4 Dew Point	45
3.3.2.5 Zambretti Forecast System	46
3.3.3 Distribution Methods	47
3.3.3.1 The Web Host	48
3.4 Functional Description of the Study	48
3.5 IWCMS Operational Diagram	50
Chapter 4: Research Findings	
4.1 Prototype Design	51
4.2 Functionality Test	55
4.3 Accuracy Tests and Benchmarks	57
4.4 Atmospheric Pressure (Mean Sea Level Pressure) and Air Temperature	81
4.5 Humidity Sensor	82
4.6 Wind Speed, Wind Direction, and Rain Gauge	84
4.7. Cost Analysis	87

4.7.1 Hardware Costs	87
4.7.2 Contingency and Maintenance Cost	89
4.7.3 Energy Cost	90
4.8 Data Dissemination System (DDS)	92
4.8.1 Xively	92
4.8.2 Cumulus	93
4.8.3 Customized Android Application	94
4.9 Short Range Forecasting System (SRF)	95
4.10 Theory of Operation	103

Chapter 5: SUMMARY, CONCLUSION AND RECOMMENDATIONS

5.1 Summary	104
5.2 Conclusion	105
5.3 Recommendation	106

WORKING REFERENCES / BIBLIOGRAPHY 107

APPENDICES

Appendix A – Source Code	112
Appendix A.1 – Arduino Sensor Interface	112

Appendix A.2 – Arduino Receiver/ Xively Tranceiver	133
Appendix A.3 - NTSC Output	140
Appendix A.4 – Cumulus Interface	155
Appendix A.5 – Cumulus Web	162
Appendix A.6 - Cumulus Jscript	211
Appendix A.7 – Cumulus Cascading Style Sheet (CSS)	260
Appendix A.8 – Android Application	257
Appendix A.9 – Cumulus Configuration File (.ini)	259
Appendix A.10 – Zambretti and Others	271
Appendix A.11 - CSV Output	333
Appendix B – Research Output on Twitter	370
Appendix C – NOAA GFS Data	377
Appendix D – NOAA Standards, Communications, Requirements, Technical	
Specifications and Construction Methodology	392
Appendix E – Photo Documentations	408
Appendix F – IWCMS Data	413
Appendix G – Checklist of Summary Reviews	430
Appendix H – Gantt Chart	
Appendix I – Curriculum Vitae	

ABSTRACT

Integrated Weather Condition Monitoring System (IWCMS) is a prototype circuit design embedded with a system model that focuses attention on gathering weather data such as wind speed, wind direction, atmospheric pressure, air temperature, dew point, rainfall amount and humidity. The model will perform basic weather assessment, weather data distribution and center coordination. IWCMS will gather data through custom sensors which are then verified by National Oceanic and Atmospheric Administration (NOAA). Real time verification were done through the use of digital and analog weather sensors which are primarily controlled by programmed microcontroller circuit using Arduino based platform. These microcontrollers are hosted by a single data logger consisting of a workstation that runs through fast Ethernet services where all the necessary weather details are recorded. These actual weather data together with the data gathered from NOAA are analyzed and evaluated based on standards. Using Arduino platform, cumulus and Java software with the corresponding Graphical User Interface (GUI), and the developed android application, all analyzed data usage used to be the source of public warning information. Warnings were sent through remote access using Internet Protocol (IP) services like twitter and facebook, and a real time internet broadcast with appropriate GUI's., an analog TV broadcast (composite PAL) output was also an option. And lastly, these data can be transported to National Oceanic and Atmospheric Administration- Citizen Weather Observer Program (NOAA CWOP) using a secured line for verification and recording. Any changes and similarities in the weather data gathered will be accurately calculated and assessed by the provided standards for Short Range Forecasting (SRF). Incoming weather disturbances (isolated or widespread) such as tropical storms, Low Pressure Areas (LPA), localized thunderstorms, rain showers, hail and others can be foreseen with a reasonable accuracy. Through this study, the

public are provided with accurate weather forecast and warning in advance, specifically in the province of Cavite, which can now be utilized in order to exercise emergency risk reduction measures through the system information dissemination that will somehow, avoid sacrificing lives, loss of crucial time and reduction of government resources.

