Electronic Travelling Aid Using Haptic Feedback System For The Visually Impaired Individuals

A Thesis Presented to the Faculty of Computer Engineering College of Engineering, Architecture and Technology De La Salle University – Dasmarinas Dasmarinas City, Cavite

In Partial Fulfillment of the Requirements for the Degree of Bachelor of Science in Computer Engineering

by

David John S. Agni Victor N. Bueno Florisa Anne H. Roque

TABLE OF CONTENTS

TITLE PAG	GE	i
APPROVA	L PAGE	ii
ACKNOW	LEDGMENT	iii
TABLE OF	CONTENTS	v
LIST OF T	ABLES	viii
LIST OF F	IGURES	viii
ABSTRAC	T INFORM	ix
Chapter 1:	THE PROBLEM AND ITS BACKGROUND	
	1.1 Introduction	1
	1.2 Background of the Study	1
	1.3 Statement of the Problem	6
	1.4 Conceptual Framework	6 7 9
	1.5 Significance of the Study	9
	1.6 Scope and Delimitation of the Study	11
	1.7 Definition of Terms	11
Chapter 2:	REVIEW OF RELATED LITERATURE	
	2.1 Foreign Literatures	13
	2.2 Local Literatures	17
	2.3 Foreign Studies	18
	2.3.1 Venucane: An Electronic Travel Aid for Visually	
	Impaired and Blind People	18
	2.3.2 Videation Assistant for Blind and Cognitively-	14.77
	Impaired Users	19
	2.3.3 Stereo Vision in Blind Navigation Assistance	20
	2.3.4 Object Recognition for the Visually Impaired	21
	2.3.5 HandSight: A glove for the blind to feel	
	shapes and navigate obstacles	21
	2.3.6 Haptic Proximity Module (HPM) for Low	
	Vision users	22
	2.3.7 Discrete distance and water pit indicator using	
	AVR ATmega8 in Electronic Travel Aid for Blind	22
	2.3.8 Blind People's Other Senses Not more Acute	22
	2.3.9 Seeing by Touch for Wayfinding	23
	2.3.10 Wearable Obstacle Detection System	24
	2.3.11 BlindAid	24

	2.3.12 OSCAR (Obstacle Scan and Reporting)	25
	2.3.13 Ultrasonic Haptic Vision System	25
	2.4 Local Studies	26
	2.4.1 Electronic Obstruction Detecting Device	
	For The Visually Impaired Individuals	26
	2.5 Relevance to the Present Study	26
	###	823
Chapter 3:	RESEARCH METHODOLOGY	
		720
	3.1 Methodological Framework	28
	3.2 Research Design	30
	3.3 Research Instruments	31
	3.4 Data Gathering Procedure	32
	3.4.1 Research	32
	3.4.2 Interviews/Consultation & Surveys	32
	3.4.3 Prototype Designing	33
	3.4.3.1 Identification of System Components	33
	3.4.3.2 System Layout	39
	3.4.3.3 Testing and Evaluation	40
		42
	3.5 Prototype Operation Procedures	44
Chanter 4:	RESEARCH FINDINGS	
Chapter 4.	RESEARCH FINDINGS	
	4.1 Interview Results	46
	4.2 Prototype Design	47
	4.3 Accuracy Testing	51
	4.4 Vibration Strength Test	53
	4.5 Vibration Pattern	54
	4.6 Total Functionality Test	57
	4.6.1 User Evaluation Results	58
	4.7 Actual Test	59
Chapter 5:	SUMMARY, CONCLUSION AND RECOMMENDATION	
Chapter 5.	SUMMART, CONCLUSION AND RECOMMENDATION	
5.1 Summ	arv	61
5.2 Conclu		62
	nmendation	63
J.J Recoin	inchdation	03
REFEREN	CES	64
APPENDIO	CES.	
MILKON		
Appen	ndix A Gantt-Chart	67
Appen		68
Appen	[기업문문문의 사람들	71
Appen		72
Appen	dix D Questionnaire	12

Appendix E	Photo Documentation	73
Appendix F	Interview Questions	75
Appendix G	Letters	76
Appendix H	Datasheets	82
Appendix I	Curriculum Vitae	122

LIST OF TABLES

Table 3.1	US-100 Pin Assignment and Descriptions	34
Table 3.2	310-101 Vibration Motor Specifications	38
Table 4.1	US-100 Proximity Sensor Accuracy Test	51
Table 4.2	Vibration Strength Test Results	53
Table 4.3	Blindfolded User Survey Results	57
	LIST OF FIGURES	
Figure 1.1	Research Paradigm	7
Figure 1.2	Sensor Locations	8
Figure 1.3	Head Sensor Location	9
Figure 2.1	Solarbotics VPM2 Vibrating Disk Motor	16
Figure 3.1	Methodological Framework	28
Figure 3.2	US-100 Compact Ultrasonic Module	34
Figure 3.3	US-100 Timing Diagram	35
Figure 3.4	Sample Wiring Diagram for US-100	36
Figure 3.5	gizDuino+ mini	36
Figure 3.6	310-101 10mm Shaftless Vibration Motor	38
Figure 3.7	Donjoy Hat Trick Soccer Head Gear (DJO Global)	40
Figure 3.8	Haptic System Design Flowchart	44
Figure 4.1	Final Head Gear Prototype	48
Figure 4.2	Final Hand Gear Prototype	49
Figure 4.3	Head Gear Schematic	49
Figure 4.4	Hand Gear Schematic	50
Figure 4.5	Accuracy Test Setup	51
Figure 4.6	US-100 Ultrasonic Proximity Sensor Accuracy Test	52
Figure 4.7	Motor On and Off Delay	54
Figure 4.8	Head Vibration Pattern (Wall)	55
Figure 4.9	Vibration Pattern for Upstairs	56
Figure 4.10	Vibration Pattern for Downstairs	57
Figure 4.11	Blindfolded User Survey Results Chart	58
Figure 4.12	Actual Prototype Testing Result	59

ABSTRACT

The major limitations of a blind person include the way of travelling and mobility. It is a challenge for them to move around in unfamiliar places and they need additional equipment to navigate around places.

The Electronic Travelling Aid Using Haptic Feedback System for the Visually Impaired Individuals is a microcontroller-based system and ultrasonic technology that helps the blind in terms of travelling. The device focused on the group of people that lack visual capabilities which they focus more on touch and hearing. Using vibration or haptic feedback is a new approach for a better design.

The prototype consists of two devices; head gear and hand gear. There are several steps to realize the haptic system. The first step is to select the components to be used in the prototype like the microcontrollers, sensors and motors then create a circuit wherein the sensors and motors are integrated into the microcontroller. The program is created to integrate to the circuit to the function. Lastly, test the system for functionality.

The impaired individuals developed keen senses compared to the sighted person.

They rely on their sense of touch, smell and feel. The prototype focuses on touch because it will provide richer information to the user since it will not reduce their hearing capabilities and does not limit the use of hands.