Proposed Design of Sustainable Water Supply System for Tua Elementary School

An Undergraduate Thesis Presented to
The Faculty of the College of Engineering, Architecture and Technology
De La Salle University- Dasmariñas
Dasmariñas City, Cavite

In Partial Fulfillment of the Requirements for the Degree of
Bachelor of Science in Environmental and Sanitary Engineering

Apolinario, Juan Paolo G.
Boa, Ranil Jay O.
Malijan, Allyannah Mae S.

March 2015
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF APPENDIX</td>
<td>vii</td>
</tr>
</tbody>
</table>

CHAPTER 1: THE PROBLEM AND ITS BACKGROUND

1.1 Introduction 1
1.2 Statement of the Problem 4
1.3 Objectives of the Study 5
1.4 Significance of the Study 5
1.5 Conceptual Framework 7
1.6 Scope and Limitations of the Study 8
1.7 Definition of Terms 8

CHAPTER 2: REVIEW OF RELATED LITERATURE

2.1 Foreign Literature 11
2.2 Water Supply 12
2.3 WaterDemands 13
2.4 WaterQuality 14
2.5 Groundwater Resource 15
4.4.1 General Information .. 32
4.4.2 Project Description ... 33
4.4.3 Description of the Environment 33
4.4.4 Impact Assessment and Mitigation 35
4.4.5 Environmental Management Plan 37
4.4.6 Environmental Monitoring Plan 38
4.4.7 Recommendation and Conclusion 39
4.5 Population Projection ... 41
4.6 Water Demand .. 42
4.7 Determination of Tank Capacity 43
4.8 SWOT Analysis .. 45
4.9 Hydraulic Analysis .. 47
4.10 Engineering Design .. 49
 4.10.1 Elevation Map ... 49
 4.10.2 Pipe Layout .. 50
 4.10.3 Design of Tank .. 52
 4.10.4 Design of Rainwater Collection System 53
4.11 Chlorination .. 63
 4.11.1 Reservoir Disinfection 63
 4.11.2 Chlorine Dosage .. 64
4.12 Construction Project Management 65
 4.12.1 Cost and Estimate .. 65
CHAPTER 5: SUMMARY OF FINDINGS, CONCLUSION AND RECOMMENDATION

5.1 Summary of Findings ... 67
5.2 Conclusion ... 68
5.3 Recommendation ... 69

BIBLIOGRAPHY ... 71

APPENDICES ... 72
LIST OF TABLES

Table 4.1: Distance and Elevation ... 26
Table 4.2: Population of Tua Elementary School (2009-2015) 41
Table 4.3: Projected Population of Tua Elementary School (2015-2025) 42
Table 4.4: Consumption and Demand Analysis .. 43
Table 4.5: Hydraulic Analysis (Tua Elementary School to Ilaya Water Tank) 47
Table 4.6: Hydraulic Analysis (Tua Elementary School) 47
Table 4.7: Size of Storm Drain.. 53
Table 4.8: Size of Roof Gutter and Roof Leader ... 53
Table 4.9: Rainwater Catchment ... 53
Table 4.10: Percentage of Available Chlorine ... 63
Table 4.11: Project Scheduling ... 65
LIST OF FIGURES

Figure 1.1: Conceptual Framework ... 7
Figure 3.1: Methodological Framework .. 20
Figure 4.1: Location and Road Map ... 25
Figure 4.2: Stationing and Elevation Map ... 27
Figure 4.3: SWOT Analysis .. 45
Figure 4.4: Pressure and Discharge in Main Water Line 48
Figure 4.5: Elevation Map ... 49
Figure 4.6: Pipe Layout (Potable Water) ... 50
Figure 4.7: Connections on Buildings (Potable Water) 51
Figure 4.8: Design of Water Tank ... 52
Figure 4.9: Pipe Layout (Rainwater) ... 54
Figure 4.10: Design of Typical Rainwater Tank ... 55
Figure 4.11: Details of Water Closet Connections ... 56
Figure 4.12: Tank 1 Connections (Rainwater) .. 57
Figure 4.13: Tank 2 Connections (Rainwater) .. 58
Figure 4.14: Tank 3 Connections (Rainwater) .. 59
Figure 4.15: Tank 3 Connections (Irrigation System) 60
LIST OF APPENDIX

Appendix A: Request for Field Investigation 72
Appendix B: Request for Land Surveying Equipment 75
Appendix C: Water Quality Testing Results 78
Appendix D: Collecting Water Sample for Microbiological Examination 82
Appendix E: Growth Rate ... 83
Appendix F: Water Demand ... 84
Appendix G: Hydraulic Analysis ... 85
Appendix H: Environmental Impact Assessment Matrix 95
Appendix I: Cost and Estimate ... 105
Appendix J: Project Scheduling ... 107
Appendix K: Sizes of Gutter Top & Roof Leader 108
Appendix L: Water Sampling ... 111
Appendix M: Field Investigation ... 112
Appendix N: Key Informant Questions ... 113
Appendix O: Water Usage Label ... 115
ABSTRACT

Water is considered as one of the most abundant substances necessary for human existence. In the Philippines, having proper water supply system has been a long problem in rural communities. For this reason, the researchers conducted a study at Barangay Tua, Magallanes, Cavite with the primary purpose of providing a design of a sustainable water supply system for Tua Elementary School which is acceptable in the community and environment, safe in quality and sufficient in quantity. Data gathered from the school and the community were used to project the population and water demand of the school for the next 10 years. This computation was then used as the basis for the design of the whole distribution system including tank capacity, pipe network layout and hydraulic analysis. Water samples from the source and an identified alternative source of water were also examined for its physical, chemical and microbiological parameters. Collected water samples passed both physical and chemical analysis but failed the microbiological test based on the 2007 Philippine National Standards for Drinking Water (PNSDW). Chlorination was introduced in the system to provide safe and potable water. Using local data and responses from justifiable key informants, an initial environmental impact assessment report was also provided.

Keywords: Water Supply, Sustainable, Barangay Tua, PNSDW, EIA