PHYLOGENETIC ANALYSIS AND BARCODING OF GOBY SPECIES IN MARAGONDON RIVER, CAVITE USING CO1 GENE

An Undergraduate Research Presented to the Faculty of the Biological Sciences Department College of Science De La Salle University - Dasmariñas Dasmariñas, Cavite

In Partial Fulfilment of the Requirements for the Degree of Bachelor of Science Major in Human Biology

Dawn Mitzerl V. Panoncillo Alyssa Marie I. Rogado
March 2014
ABSTRACT

Gobiidae is one of the largest families of acanthomorph fishes found in the Philippines. Despite this, much has to be discovered and determined, especially in Margondon River, at the foot of Mts. Palay-Palay National Park, a protected landscape. Morphometrics and morphological characteristics were examined for initial identification. Pre-extracted DNAs were amplified using primers for cytochrome c oxidase subunit 1 (CO1); the sequences were analyzed to estimate divergence and determined phylogenetic relationship of the samples. Cytochrome c oxidase subunit 1 (CO1) ranged from 676 to 692 bp. B9 and B10 was identified as *Glossogobius aureus*, while B4, B5 B6, B8 and B11 putatively belongs to *Glossogobius* spp. All the query sequences formed a paraphyletic family of Gobiidae, although not well supported, as well as polyphyly of subfamilies *Gobiinae* and *Gobionellinae*.
ACKNOWLEDGMENTS

The researchers wish to express their utmost gratitude and appreciation to the following:

Mr. Wilson R. Jacinto, their research adviser, for his excellent guidance, patience, motivation, enthusiasm, immense knowledge and for making this research possible. His conscientious effort in proof reading our endless drafts is greatly appreciated;

Panoncillo and Rogado family, for their unequivocal support, both emotionally and financially throughout this research, especially our parents for always believing in us and for their continuous love and encouragement for them to pursue this study;

Research panel members, Dr. Ronaldo Lagat, Dr. Janet P. Macawile and Mr. Marlon Pareja, for giving their opinions, suggestions, and ideas for the improvement of the study;

Mr. Glenn Oyong, of the Science and Technology Research Center -De La Salle University- Manila, for his assistance, constructive suggestions during the experimental proper; his willingness to help them in very much appreciated and for allowing them to do their experimental proper at DLSU-Manila;

BSD Professors, for their unwavering support to the Biology students in doing more research studies that will embolden their minds;
Dr. Janet P. Macawile (BSD Laboratory Supervisor), Ms. Cynthia Naca, Mr. Ryan Barlao, Mr. Danilo Gatdula, Mr. Manuel Llanilo, and Mr. Juan Almonguera (laboratory technicians), for their hard work, expertise and patience in assisting them in running the experiment in the research laboratory;

HUB41 family, for the sleepless nights during deadlines and for all the fun for the last four years;

And lastly, Jesus Christ, our Lord and Savior; for giving them wisdom, strength, knowledge, and perseverance during this research project and for the guidance in helping them surpass all the trials and for giving them decisiveness in pursuing their studies.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title Page</td>
<td>1</td>
</tr>
<tr>
<td>Abstract</td>
<td>2</td>
</tr>
<tr>
<td>Approval sheet</td>
<td>3</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>4</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>6</td>
</tr>
<tr>
<td>CHAPTER 1 INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1 Background of the Study</td>
<td>11</td>
</tr>
<tr>
<td>1.2 Conceptual Framework</td>
<td>12</td>
</tr>
<tr>
<td>1.3 Statement of the Problem</td>
<td>13</td>
</tr>
<tr>
<td>1.4 Scope and Limitations</td>
<td>13</td>
</tr>
<tr>
<td>1.5 Significance of the Study</td>
<td>14</td>
</tr>
<tr>
<td>1.6 Definition of Terms</td>
<td>15</td>
</tr>
<tr>
<td>CHAPTER 2 LITERATURE REVIEW</td>
<td></td>
</tr>
<tr>
<td>2.1 Conceptual Literature</td>
<td>16</td>
</tr>
<tr>
<td>2.2 Related Studies</td>
<td>21</td>
</tr>
<tr>
<td>CHAPTER 3 METHODOLOGY</td>
<td></td>
</tr>
<tr>
<td>3.1 Research Design</td>
<td>24</td>
</tr>
<tr>
<td>3.2 Research Setting</td>
<td>24</td>
</tr>
<tr>
<td>3.3 Research Procedure</td>
<td>24</td>
</tr>
<tr>
<td>3.4 Data Gathering and Statistical Analysis</td>
<td>28</td>
</tr>
</tbody>
</table>
CHAPTER 4 RESULTS AND DISCUSSION

4.1 Result 29

4.2 Discussion 35

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions 40

5.2 Recommendations 41

Cited References 42

APPENDICES

A. Map of the study 46

B. Morphometric Measurement 47

C. PCR Master mix computation 48

D. Electrophoresis by 1st base Asia 49

E. Photodocumentation 50

F. Curriculum Vitae 55-56
LIST OF TABLES

Table 1. Morphometric measurement of the collected goby species 30
Table 2. BLASTN matches of the goby species 31
Table 3. Estimates of Evolutionary Divergence between CO1 Gene 32
LIST OF FIGURES

Figure 1. Conceptual framework 12
Figure 2. Mitochondrial gene (CO1) 19
Figure 3. Evolutionary relationship of taxa using CO1 gene 34
LIST OF PLATES

Plate 1. Morphometric Measurement based on FISHBASE 47

Plate 2. Electrophoresis by 1st base Asia 49

Plate 3. Fish Collection 50

Plate 4. Analysis of Physiochemical Characteristics of the River 50

Plate 5. Collected Specimens 51

Plate 6. Morphometric Measurement of the collected species 51

Plate 7. Preparation of DNA for PCR mix 52

Plate 8. Preparation of mastermix 52

Plate 9. Samples placed in the PCR machine 53

Plate 10. Preparation for electrophoresis 53

Plate 11. Agarose Gel Electrophoresis 54

Plate 12. Materials used for PCR mix 54