Assessment of Light and Ventilation of the College of Tourism and Hospitality Management Building in Accordance to Green Building Design Criteria

A Research Proposal to the Faculty of Environmental and Sanitary Engineering College of Engineering, Architecture and Technology De La Salle University – Dasmariñas Dasmariñas City, Cavite

In Partial Fulfillment of Requirements for the Degree Bachelor of Science in Environmental and Sanitary Engineer

Calanog, Paul Patrick Domingo, Kay Colleen Valles, Melvert

March 2013

Abstract

The purposed of this study was to assess the lights and ventilation of the College of Tourism and Hospitality Management Building in order to prevent health issues of the occupants and to improve the facility to become sustainable building. The researchers conducted a survey to know the sentient of the occupants of the building and to give the solutions to it. This study shows found out that the required lux did not attain the intended law of P.D 856 and the Philippine Electrical Code which is 250 - 500 lux. This study aimed to present a new design material and system when it comes to light. The proposed lighting material is to change the fluorescent light into LED light and make a schedule in light transition using day lighting. It is more eco-friendly and it has higher lux in same watts than fluorescent light bulb has.

The diffuser that is presently used in the building also affects the intensity of light. So, the solution is to remove and change the diffuser into high frequency ballast. It will help to increase the lumens coming from the light and to distribute it to the area of the room.

The researcher also found out that natural air is not available. The solution is to convert the present mechanical ventilation into an inverter type air-conditioner. Inverter type can adjust automatically the temperature needed of the occupants. Also, it has bigger EER (Energy Efficiency Ratio). It means it is more efficient than any other type of air conditioner.

The said material and proposed system will help the building to reduce up to 50% of energy consumption and will also prevent illness that the occupants can get from the low lumens of light and it can be improved thru the right intensity that gives the light.

TABLE OF CONTENTS

Page

СНАР	TER 1	1
	1.2 Statement of the Drohlem	.1
		.5
	1.3 Objective of the Study	3
	1.4 Importance of the Study	.4
	1.5 Scope and Limitation	.5
	1.6 Conceptual Framework	.6
СНАР	PTER 2	_
	2.1 Public Health	7
	2.2 Green Design	7
	2.2.1 Green Architecture	8
	2.2.2 Leadership in Energy and Environmental Design	8
	2.2.2.1 LEED Building Certified in the Philippines	9 10
	2.2.4 Building for Ecologically Responsive Design Excellence	10
	2.3 Sanitation Code of the Philippines for School	11
	2.4 Lighting	.12
	2.4.1 Green Lighting	12
	2.4.1.1 Day-lighting Design	12
	2.4.2 Sun Path Analysis	13
	2.4.3 Department Of Energy Guidelines on Energy Conserving Designs	10
	of Buildings	13 14
	2.4.5 Advanced Energy Design Guide for K-12 School Buildings	14
	2.5 Ventilation	15
	2.5.1 Natural Ventilation	.15
	2.5.2 Implementing Rules & Regulations of the Philippines	
	Chapter 6 PD 856	16
	2.6 Formulas	17
	2.6.1 Electrical Formula.	17
	2.6.2 Light Formula.	17
	2.7 Strength, Weakness, Opportunities, Threats Analysis (SWOT Analysis)	.17
	2.8 Proposed DLSU-D Green Building Guidelines	18
	2.9 Comparison of LEED and BERDE and Non Certified Buildings	18

CHAPTER 3

3.1 Research Design and Methodology	20
Figure 3.1 Methodological Frameworks about Public Health	21
Figure 3.2 Expanded Methodological Frameworks	22
3.2 Sources of Data	23
3.3 Sampling Procedures	23
3.4 Methods of Data Gathering	25
3.5 Instrumentation and Data Collection	27
3.6 Statistical Treatment	27
3.7 Proposed and Recommendation to Change the Building	27

CHAPTER 4

Data and Results	29
4.1 Top List of High Electrical Consumption in DLSU-D	30
4.2 Monthly Electricity Bill of CTHM Building	31
4.3 Summary of Survey	32
4.4 Analysis	33
4.4.1 SWOT Analysis of Survey	33
4.4.2 SWOT Analysis for Lights	34
4.4.3 SWOT Analysis for Ventilation	.35
4.5 Light Data	36
4.5.1 Lux Reading	36
4.5.2 Light Reconfigure and Lux Reading	36
Point Used in Measuring the Light Intensity at CTHM Rooms	37
Table 4.3 Walk through Audit for lights	38
Actual Photos of the Rooms with the Current Light Mounting .	44
4.5.3 Comparison of Diffuser and without Diffuser	47
Actual Pictures when the Diffuser was Removed	48
CTHM Prototype	49
Proposed Diffuser in CTHM	50
Table 4.5 Comparison of Fluorescent and LED	51
4.5.4 Sun Path Analysis	52
4.5.5 Propose Detailed Schedule of Operations of Lights	
and Ventilations in CTHM building	57
4.5.6 Size of Windows and Doors	60
4.5.7 Electricity Cost Comparison when using LED and CFL	62
4.5.8 Computation of LED vs CFL Energy Cost at CTHM	63
4.5.9 Electricity Cost Comparison when using LED and Fluorescent	65
4.5.10 Computation of LED vs Fluorescent Energy Cost at CTHM	66

4.5.11 Comparison when using LED vs CFL vs Incandescent
4.6.1 Mechanical Ventilation Unit at CTHM 60
4.0.1 Mechanical Ventilation Onit at CTTIM $\dots 09$ 4.6.2 Temperature at CTHM 69
Table 4 14 Wind Velocity Available at CTHM 70
4 6 3 Air Condition Inverter vs Air Condition Non-inverter 71
4.6.4 Computation of Inverter Type vs Non-inverter Type
Table 4.16 Energy Cost Computation Usage
4.7 Comparison of Assessment result Based on BERDE and Green Building75
CHAPTER 5
5.1 Summary of Data Findings77
5.2 Conclusion
5.3 Recommendation
Definition of Terms
Acronym
References
Appendix A
Leadership in Energy and Environmental Design Rating System (LEED)
Appendix B
IRR of Presidential Decree No. 856 Chapter 6
Appendix C
Survey Form
Appendix D
Department Of Energy Guidelines On Energy Conserving Designs
Of Building94
Appendix E
Proposed DLSU-D Green Building Guidelines
Appendix F
UNDP – DOE – GEF Manual Of Practice On Efficient Lighting100
Appendix G
Building for Ecologically Responsive Design Excellence (BERDE)
Guidelines for Existing Buildings103

Appendix H Comparison Chart of LED Light vs. Incandescent Light Bulb vs. CFLs105
Appendix I Philippine Efficient Lighting Market Transformation Project (PELMATP)107
Appendix J Lighting / Principle of Illumination108
Appendix K Electricity Cost Comparison when Using LED and CFL Computation in Table 4.7
Appendix L LED vs CFL Energy Cost at CTHM Computation in table 4.8
Appendix M Cost Comparison when Using LED vs Fluorescent Computation in Table 4.9
Appendix N LED vs Fluorescent Energy Cost at CTHM
Appendix O Comparison of Inverter vs Non-Inverter Type Energy Cost at CTHM Computation in Table 4.11
Results on Survey
Appendix Q Getting the Lux in Different Time in Every Room of the College of Tourism and Hospitality Management Building
Appendix R Experiment of Light Intensity by Disengagement of Diffuser in a Room 316 in the College of Tourism and Hospitality Management Building
Appendix S Proposed Schedule for Efficient Use of Sun Lighting
Appendix T Actual Pictures in Surveying the Students and Faculty
Appendix U Requesting Letters