EFFECTS OF DIFFERENT CONCENTRATIONS OF ARTIFICIAL ACID RAIN ON THE LEAF MORPHOLOGY AND CHLOROPHYLL CONTENT OF *Canarium ovatum* (PILI)

An Undergraduate Research Presented to the Biological Sciences Department College of Science De La Salle University- Dasmariñas

In Partial Fulfillment of the Requirements for the Degree Bachelor of Science in Biology Major in Human Biology

> Enriquez, Mar Rustan J. Ferma, Marjorie I.

> > March 2009

ABSTRACT

The study determined the effects of different concentrations of artificial acid rain on the leaf morphology and chlorophyll content of Canarium ovatum (Pili) in ways that it will raise concerns on detrimental effects of acid rain in our country using Canarium ovatum as test plant. A total of 36 test plants were used in the study that has four treatments and three replicates. The presence or absence of spotting, the change in the leaf color and the number of the chlorophyll content of leaves of Canarium ovatum were recorded, collected, extracted and analyze after two months. Different concentrations of artificial acid rain were prepared and administered: T0- 5.6 (control), T1- 6.27 (natural rain), T2- 4.9 and T3- 3.22. Using Chi Square test and One-Way ANOVA, the researchers observed that there was significant difference between the different treatments of artificial acid rain based on the leaf morphology and chlorophyll content of Canarium ovatum. Based on the gathered results and observations, this research concludes that the different concentrations of acid rain used in the experiment had a considerable effect to both the leaf morphology and chlorophyll content of Canarium ovatum. Changes on the leaf morphology are particularly apparent as the acidity of the artificial acid rain increases. The lower the pH levels of artificial acid rain, the greater is the degree of damage and changes on the leaves of *Canarium ovatum* plants. The same is true for the chlorophyll content of Canarium ovatum plants. The decrease on the pH concentration of artificial rain also brought a decrease on the chlorophyll content on the leaves of Canarium ovatum plants since it directly damage the chlorophyll molecule and the internal buffering capacity of the plant.

TABLE OF CONTENTS

I. Introduction	
1.1 Background of the Study	2
1.2 Conceptual Framework	2
1.3 Statement of the Problem	3
1.4 Hypothesis	3
1.5 Scope and Delimitation	3
1.6 Significance of Study	4
1.7 Definition of Terms	4
II. Review of Related Literature	5
2.1 Conceptual Literature	5
2.2 Related Studies	11
III. Methodology	12
3.1 Research Design	12
3.2 Research Setting	12
3.3 Research Procedure	12
3.4 Data Gathering and Statistical Tool	15
IV. Results and Discussion	16
4.1 Results	16
4.2 Discussion	18
V. Conclusions and Recommendations	21
5.1 Conclusions	21

5.2 Recommendations	22
Literature Cited	23
Curriculum Vitae	41

Appendices

Appendix		
А	Standard Procedure for Extraction and Determination of	
	Chlorophyll Concentration	25
В	Raw Data on the Leaf Morphology of Canarium ovatum	
	during Duration of Treatment of Artificial Acid Rain	26
С	Canarium ovatum Leaf Morphology Statistical Analysis	28
D	Chlorophyll Content Determination of <i>Canarium ovatum</i>	
	after Duration of Treatment of artificial acid Rain	30
Е	Computations for Artificial Acid Rain Formulation	32
F	Photodocumentation	35
G	Gantt Chart	39
Н	Research Budget	40

List of Figures

Figure

1	Canarium ovatum Plants before Application of Treatments	35
2	Chemical Components of Artificial Acid Rain	35
3	Artificial Acid Rain Preparation and Adjustment of pH using pH meter	36
4	T0 at 2 nd Week of Experimentation	37
5	T1 at 2 nd Week of Experimentation	37
6	T2 at 2 nd Week of Experimentation	37
7	T3 at 2 nd Week of Experimentation	37
8	T0 at 4 th Week of Experimentation	38
9	T1 at 4 th Week of Experimentation	38
10	T2 at 4 th Week of Experimentation	38
11	T3 at 4 th Week of Experimentation	38
12	Extraction of Chlorophyll	38
13	Centrifugation	38

List of Tables

Table

1	Change in Leaf Color of <i>Canarium ovatum</i> after four	
	weeks of Treatment of Different Concentrations of Artificial Acid Rain	26
2	Presence of Spotting on Leaves of Canarium ovatum after four weeks of Treatment of Different Concentrations of Artificial Acid Rain	27
3	Statistical Analysis of Morphological Changes on <i>Canarium</i> ovatum Leaves	28
4	Absorbance of Canarium ovatum using Spectrophotometer	30
5	Statistical Analysis of Chlorophyll Concentration in <i>Canarium</i> ovatum Leaves	30
6	Tukey Test of the Chlorophyll Concentration of <i>Canarium</i> ovatum Leaves	31