CORRELATION OF ELEVATION AND RELATIVE ABUNDANCE OF BAT SPECIES FOUND IN MTS.PALAYPALAY/MATAAS NA GULOD PROTECTED LANDSCAPE, LUZON ISLAND, PHILIPPINES

An Undergraduate Thesis Presented to

The Faculty of the Biological Sciences Department

College of Science

De La Salle University – Dasmarińas

Dasmarińas, Cavite

In Partial Fulfillment of the Requirements
for the Degree of Bachelor of Science in Biology
With Concentration in Environmental Science

AMBER RAY M. ACAMPADO

January 2009

ABSTRACT

The study assessed the bats found in Mts. Palaypalay/ Mataas na Gulod Protected Landscape, Ternate, Cavite using elevational gradient during the months of June-September of 2008. The study employed simple random sampling with respect to three elevations; 69m, 320m, and 370m, respectively. The number of bats was significantly highest at the highest elevation sampled, which yielded 41.13% of and lowest at the second elevation with 27.56% of the total bats captured. The net nights totaling to 25, yielded a total of two hundred fifty-four bat individuals comprised of four species. The most abundant bat species is Cynopterus brachyotis (40.55%) of the total caught bat species, followed by Ptenochyrus jagori (34.25%), Roussetus amplexicaudatus (24.80%) and *Macroglossus minimus* (0.40%). Cynopterus brachyotis and R. amplexicaudatus were found all throughout the sampled elevations excluding M. minimus which was only found in the lowest elevation and considered widespread species in Asia. *Ptenochirus jagori*, which is the only endemic bat species caught during the study, had shown a stable population size even in very disturbed areas of the sites. The correlation analysis employed showed no significant relationship between the relative abundance of the bat species and the various elevations of the study site. The lack of higher elevation in Mataas na Gulod/Palpag site needs further investigation due to the challenges in climate.

TABLE OF CONTENTS

Title Page	1
Abstract	2
Acknowledgement	3
Table of Contents	5
CHAPTER 1 INTRODUCTION	7
1.1 Background of the Study	7
1.2 Conceptual Framework	9
1.3 Statement of the Problem	9
1.4 Hypotheses	10
1.5 Scope and Limitations	10
1.6 Significance of the Study	11
1.7 Definition of Terms	11
CHAPTER 2 LITERATURE REVIEW	13
2.1 Conceptual Literature	13
2.2 Related Studies	24
CHAPTER 3 METHODOLOGY	29
3.1 Research Design	29
3.2 Research Settings	29
3.3 Research Procedure	30

3.4 Data Gathering and Statistical Analysis	32
CHAPTER 4 RESULTS AND DISCUSSION	35
4.1 Data and Results	35
4.2 Discussion	44
CHAPTER 5 SUMMARY, CONCLUSION AND	53
RECOMMENDATIONS	
5.1 Summary	53
5.2 Conclusion	54
5.3 Recommendations	55
CITED REFERENCES	57
APPENDICES	
A. Morphological Measurements and Identification	
Of Bat Species	63
B. Map of Collection Sites	71
C. Bat Morphometrics	72
D. Photo documentation	73
E. Correlation Graphs of Bat Species	79
F. Budgetary Requirements	81
G. Timetable for Research	82
H. Certification from National Museum	83
Curriculum Vitae	84