A Study on Eliminating the 5.27% Production Loss Amounting to PHP 47,807,334.64 in the process of wafer mounting and sawing of NCV78663 LED Driver IC in probe area for the months of June to November 2013

A Practicum Study presented to the Faculty of the

College of Engineering Architecture and Technology

De La Salle University – Dasmarinas

Dasmariñas, Cavite

In Partial Fulfillment
of the Requirements for the Degree in
Bachelor of Science in Industrial Engineering

Submitted by:

SANTOS, Kristine Roma T.

IEE52

Submitted to:

Engr. Ma. Estrella Natalie B. Pineda

March 2014

ABSTRACT

On Semiconductor has the broadest selection of energy efficient solutions for a variety of end markets. Its products help manage power, extend battery life, protect sensitive circuits from electromagnetic and electrostatic discharge and help convert and regulate power in the products being used everyday. The researcher has chosen the production of NCV78663 LED Driver IC to be the focus of the study. The product however experiences problems regarding to its inability to reach the target output for the last months. The researcher has found out what the causes are that makes NCV78663 LED Driver IC experience a production loss. The objective of this study is to eliminate the causes that are being experienced by the company for the past six months. As the training and research go along, the researcher was able to come up with alternative course of actions which can help solve these problems.

TABLE OF CONTENTS

P	age
Approval Sheet	i
Abstract	ii
Acknowledgement	iii
Table of Contents	V
List of Tables	vii
List of Figures	. viii
CHAPTER I: THE PROBLEM AND ITS BACKGROUND	
Introduction	1
Background of the Study	2
Statement of the Problem	6
Objectives of the Study	6
Scope and Limitations of the Study	7
Significance of the Study	7
Design and Methodology	9
Definition of Terms	. 12
CHAPTER II: REVIEW OF RELATED LITERATURE	
Review of Related Literature	. 14

CHAPTER III: PRESENTATION OF GATHERED DATA

Presentation of Gathered Data	25
Problem Tree	44
Objective Tree	48
CHAPTER IV: ALTERNATIVE COURSE OF ACTION	
Alternative Course of Action 1	52
Alternative Course of Action 2	57
Alternative Course of Action 3	63
Cost benefit Analysis	71
CHAPTER V: CONCLUSION AND RECOMMENDATION	
Conclusion	
Recommendation	73
CHAPTER VI: DETAILED PLAN OF ACTION	
Detailed Plan of Action	74
LITERATURE CITED	ga
APPENDICES	87

LIST OF TABLES

Table 1: Summary of Loss	. 25
Table 2: Summary of Production Loss	. 26
Table 3: Distribution of Production Loss	. 29
Table 4: Multiflex Prober Machine Capacity	. 30
Table 5: Wafer Mounting Process Chart	. 31
Table 6: Wafer Mounting Time Study	. 33
Table 7: Time Study in Loading of Wafers	
Table 8: Wafer Sawing Process Chart	. 37
Table 9: Preventive Maintenance Checklist	
Table 10: Summary of Machine Downtime	. 39
Table 11: Proposed Maintenance Schedule	
Table 12: Proposed 5s Action Sheet	
Table 13: Proposed 5s Red Tag Sheet	. 55
Table 14: Comparative Analysis of Vacuum Wands	. 58
Table 15: SWOT Analysis of Vacuum Wands	. 60
Table 16: SWOT Analysis of Vacuum Wands' Suppliers	. 61
Table 17: Proposed Policies and Guidelines	. 65
Table 18: Estimated Project TImeline	. 69
Table 19: Cost Benefit Analysis	. 71

LIST OF FIGURES

Figure 1: The Wafer of the Product	28
Figure 2: The Device NCV78663 LED Driver IC	28
Figure 3: Wafer Mounting Process Flow Chart	32
Figure 4: Wafer Map	34
Figure 5: Standard Time vs Actual time in Loading of wafers	36
Figure 6: Wafer Sawing Process Flow Chart	38
Figure 7: Summary of Downtime Causes	41
Figure 8: EG4 Cutting Machine	41
Figure 9: Fishbone Diagram	42
Figure 10: Telnet Software Project Flow Chart	68