THE EFFECTS OF COOPERATIVE LEARNING ON THE ACHIEVEMENT LEVEL AND ATTITUDE OF STUDENTS TOWARDS ALGEBRA

A Master's Thesis Presented to Faculty of the College of Education Graduate Studies De La Salle University – Dasmariñas Dasmariñas, Cavite

In Partial Fulfillment of the Requirements for the Degree Master of Arts in Education Major in Educational Management

ELIZABETH B. DIZON

March 2010

ABSTRACT

Title of the Research:	THE EFFECTS OF COOPERATIVE LEARNING ON
	THE ACHIEVEMENT LEVEL AND ATTITUDE OF
	STUDENTS TOWARDS ALGEBRA
Author:	ELIZABETH B. DIZON
Degree:	Master of Arts in Education
Major:	Educational Management
Date of Completion:	March, 2010

This study aimed to determine the effects of cooperative learning on the achievement level and attitude of students towards Algebra. The conceptual framework evolved from two major theories associated with cooperative learning: motivational and cognitive (Johnson, Johnson & Holubec, 2004); and principles of development of Mathematics Framework for Basic Education: Mathematics is best learned when students are actively engaged; and Students' attitudes and beliefs about mathematics affect learning.

Two classes of second year students enrolled in the school year 2009-2010 in San Jose Community High School were the samples of this study. The researcher employed a quasi-experimental design known as the Pretest-Posttest Nonequivalent Control Groups Design. The samples were grouped as experimental and control. The experimental group was confined to cooperative learning strategy and the control group was exposed to traditional method of learning. Each group consisted of 30 students. Both groups were given pretests and posttests to infer if there was a significant difference in their achievement. Similarly, a validated Mathematics Attitude Scale was given before and after the intervention to determine if there was any significant change in their attitude. To determine the significant difference between the achievement and the attitude of students towards Algebra, the researcher used t-test for dependent samples and t-test for independent samples at 0.05 level of significance.

The study found out that respondents of experimental group obtained a pretest mean score of 10.37 and got a posttest mean score of 22.03 while the control group was able to get a mean score of 9.43 and a posttest mean of 14.10. The difference between the mean score of posttest of the two groups had a computed value of 9.11 which is higher than the critical value of 2.002. The two groups' mean scores in the achievement significantly differed in favor of the experimental group. The experimental group gained more than the control group. Before the intervention both group had no significant difference on the attitude towards Algebra. However in the posttest, the mean attitude score of the experimental group was significantly higher than the control group. This means that cooperative learning developed a more positive, favorable attitude of students towards learning Algebra.

The study concludes that using cooperative learning strategy specifically the Jigsaw II had a significant effect on the students' achievement based on the achievement scores. It also had a significant effect on the students' attitudes towards Algebra.

Cooperative learning strategy would be the most recommended teaching strategy designed for Mathematics classes to combat the negative attitudes of students towards learning the subject. Seminars and workshops, in-service trainings may be provided to teachers so that they would be properly guided on the principles of cooperative learning technique. Future research may be done in order to draw more conclusive findings on the effects of cooperative learning strategy on the achievement and attitude of students towards Algebra.

TABLE OF CONTENTS

TITLE PAGE	1
ABSTRACT	2
APPROVALSHEET	4
ACKNOWLEDGEMENTS	5
TABLE OF CONTENTS	7
LISTS OF TABLES	10
LIST OF FIGURES	12
Chapter	
1 THE PROBLEM AND ITS BACKGROUND	
Introduction	13
Conceptual Framework	19
Statement of the Problem	22
Hypotheses	23
Scope and Delimitation of the Study	24
Significance of the Study	25
Definition of Terms	25
2 REVIEW OF THE RELATED LITERATURE	
Conceptual Literature	29
Research Literature	37
Synthesis	46

3 METHODOLOGY

Research Design	50
Population of the Study	51
Respondents of the Study	52
Research Instrument	53
Validation of the Instrument	54
Data Gathering Procedure	57
Statistical Treatment of the Data	59

4 PRESENTATION, ANALYSIS AND INTERPRETATION OF DATA

	Problem 1	62
	Problem 2	63
	Problem 3	65
	Problem 4	66
	Problem 5	67
	Problem 6	68
	Problem 7	70
	Problem 8	71
	Problem 9	72
	Problem 10	74
5	SUMMARY CONCLUSIONS AND RECOMMENDATIONS	
	Summary	76
	Findings	78

Conclusions		82
Recommendations		84
REFERENCES		86
APPENDICES		
A Letter of Request for	the Principal	94
B Letter of Request for	the Use of the Instrument (MAS)	95
B-1 Letter of Apology		96
B-2 Certification of Appea	arance at Vice Chancellor	
for Academics ar	nd Research Office	97
B-3 Letter through E-ma		98
B-4 Response Letter from	m VCAR	99
B-5 Confirmation Letter f	rom VCAR	100
D Letter of Request for	r the Validators	101
E Mathematics Attitude	e Scale	102
C Letter of Request for	r the Validators	106
F Table of Specificatio	n	107
G Achievement Test		112
H Schedule of Activities	5	113
I Curriculum Vitae		115

LIST OF TABLES

TABL	TABLE	
1	Population and Sample of the Study	52
2	Schedule of Respondents	56
3	Pretest Achievement Level of Students in the Knowledge,	
	Comprehension and Computational Skills	63
4	Posttest Achievement Level O Students in Knowledge,	
	Comprehension and Computational Skills	65
5	Comparison of the Pretest-Posttest Achievemen Level	
	of the Control Group	66
6	Comparison of the Pretest-Posttest Achievement Level	
	of theExperimental Group	67
7	Comparison of the Pretest Achievement Mean Score	
	of Experimental and Control Group	68
8	Comparison of the Posttest Achievement Mean Score	
	of the Experimental and Control Group	68
9	Attitude of Experimental and Control Group Before	
	and After the Intervention	70
10	Comparison of the Pretest-Posttest MAS Exposed to	
	Traditional Method of Teaching	71
11	Comparison of the Pretest-Posttest MAS Exposed to	
	Cooperative Learning Strategy	72

12	Comparison of the Pretest MAS of Experimental	
	and Control Group	73
13	Comparison of the Posttest MAS of Experimental	
	and Control Group	74
14	Effects of Cooperative Learning on the Achievement	
	Level and Attitude of Students Towards Algebra	75

LIST OF FIGURE

FIGURE	PAGE
1 Conceptual Paradigm of the Study	21

