

OPTIMIZATION ANALYSIS OF THE DELIVERY SYSTEM OF EGR TRADING USING THE MULTIPLE TRAVELLING SALESMAN PROBLEM ALGORITHM

An Undergraduate Research Presented to the Mathematics Department College of Science De La Salle University–Dasmariñas

In Partial Fulfillment of the Requirements for the Degree of Bachelor of Science in Applied Mathematics

Roselle M. Arboleda

November 2011

Table of Contents

iii

Page No.

Title Pagei
Approval Sheetii
List of Tablesv
List of Figuresvii
Acknowledgmentx
Abstractxii
CHAPTER 1 INTRODUCTION
1.1 Background of the Study1
1.2 Conceptual Framework4
1.3 Statement of the Problem
1.4 Significance of the Study

CHAPTER 2 REVIEW OF RELATED LITERATURE

2.2 Conceptual Literature	.17
2.1 Theoretical Literature	.10

CHAPTER 3 METHODOLOGY

3.1 Research Method/Procedure	21
3.2 Time and Place of Study	

CHAPTER 4 PRESENTATION/ INTERPRETATION AND	
ANALYSIS OF DATA	
4.1 Presentation/ Interpretation of Data	23
4.2 Data Analysis	64
CHAPTER 5 SUMMARY, CONCLUSIONS AND RECOMME	ENDATIONS
5.1 Summary	67
5.2 Conclusions	69
5.3 Recommendations	69
Bibliography	72
Appendices	74
A. Pictures of EGR Trading Vehicles	75
B. Map of Delivery of EGR Trading	76
Curriculum Vitae	

List of Tables

Table No.	Table NamePage N	lo.
4.1	Daily Schedule and Destination of Vehicle2	23
4.2	Computed Total Distance of Elf Truck 1 in Amuntay Phase 1	
	Using TORA	25
4.3	Computed Total Distance of Elf Truck 1 in Amuntay Phase 2 and	
	City Homes Resortsville Subdivision Phase 1 Using TORA	28
4.4	Computed Total Distance of Elf Truck 1 in Villa Luisa Phase 2	
	Using TORA	31
4.5	Computed Total Distance of Elf Truck 1 in Villa Luisa Phase 1 and 3	
	Using TORA	34
4.6	Total Distance Travelled by Elf Truck 1 in a Week Using	
	Existing System	37
4.7	Total Distance Travelled by Elf Truck 1 in a Week Using	
	Alternative System	37
4.8	Computed Total Distance of Elf Truck 2 in City Homes Resortsville	
	Subdivision Phase 2 Using TORA	39
4.9	Computed Total Distance of Elf Truck 2 in City Homes	
	Resortsville Subdivision Phase 3 Using TORA	42
4.10	Computed Total Distance of Elf Truck 2 in Villa Catalina	
	Subdivision Using TORA4	15
4.11	Computed Total Distance of Elf Truck 2 in Dasma Executive Village	
	and Villa Luisa Phase 4 Using TORA4	8

Table No.	Table Name	Page No.
4.12	Total Distance Travelled by Elf Truck 2 in a Week Using	
	Existing System	50
4.13	Total Distance Travelled by Elf Truck 2 in a Week Using	
	Alternative System	50
4.14	Computed Total Distance of Panel Truck in Solar Homes	
	Subdivision and Green Breeze Phase 1 Using TORA	52
4.15	Computed Total Distance of Panel Truck in Langkaan 1 and	
	Green Breeze Phase 2 Using TORA	55
4.16	Computed Total Distance of Panel Truck in San Agustin 1 and 2	
	Using TORA	58
4.17	Computed Total Distance of Panel Truck in San Agustin 3 and	
	Langkaan 2 Using TORA	61
4.18	Total Distance Travelled by Panel Truck in a Week Using	
	Existing System	63
4.19	Total Distance Travelled by Panel Truck in a Week Using	
	Alternative System	63
4.20	Table of Comparison of the Existing and the Alternative	
	System of Delivery	64
4.21	Table of Comparison for the Total Distance Covered of	
	each Vehicle per Week	66

List of Figures

Figure No.	Figure TitlePage N	lo.
1.1	The Paradigm of the Study	.5
2.1	Dijkstra's Labeling Procedure	12
2.2	Floyd's Triple Operation	13
2.3	Implementation of Triple Operation in Matrix Form	15
4.1	Route of Delivery to Amuntay Phase 1 Using Existing System2	4
4.2	Route of Delivery to Amuntay Phase 1 Using Alternative System2	24
4.3	Route of Delivery to Amuntay Phase 2 and City Homes Resortsville	
	Subdivision Phase 1 Using Existing System	27
4.4	Route of Delivery to Amuntay Phase 2 and City Homes Resortsville	
	Subdivision Phase 1 Using Alternative System	27
4.5	Route of Delivery to Villa Luisa Phase 2 Using Existing System	0
4.6	Route of Delivery to Villa Luisa Phase 2 Using Alternative System3	0
4.7	Route of Delivery to Villa Luisa Phase 1 and 3 Using	
	Existing System	33
4.8	Route of Delivery to Villa Luisa Phase 1 and 3 Using	
	Alternative System	33
4.9	Route of Delivery to City Homes Resortsville Subdivision	
	Phase 2 Using Existing System	38
4.10	Route of Delivery to City Homes Resortsville Subdivision	
	Phase 2 Using Alternative	38

Figure No.	Figure Title	Page No.
4.11	Route of Delivery to City Homes Resortsville Subdivision	
	Phase 3 Using Existing System	41
4.12	Route of Delivery to City Homes Resortsville Subdivision	
	Phase 3 Using Alternative System	41
4.13	Route of Delivery to Villa Catalina Subdivision Using	
	Existing System	44
4.14	Route of Delivery to Villa Catalina Subdivision Using	
	Alternative System	44
4.15	Route of Delivery to Dasma Executive Village and	
	Villa Luisa Phase 4 Using Existing System	47
4.16	Route of Delivery to Dasma Executive Village and	
	Villa Luisa Phase 4 Using Alternative System	47
4.17	Route of Delivery to Solar Homes Subdivision and	
	Green Breeze Phase 1 Using Existing System	51
4.18	Route of Delivery to Solar Homes Subdivision and	
	Green Breeze Phase 1 Using Alternative System	51
4.19	Route of Delivery to Langkaan 1 and Green Breeze Phase 2	
	Using Existing System	54
4.20	Route of Delivery to Langkaan 1 and Green Breeze Phase 2	
	Using Alternative System	54

Figure No.	Figure Title	Page No.
4.21	Route of Delivery to San Agustin 1 and 2 Using	
	Existing System	57
4.22	Route of Delivery to San Agustin 1 and 2 Using	
	Alternative System	57
4.23	Route of Delivery to San Agustin 3 and Langkaan 2	
	Using Existing System	60
4.24	Route of Delivery to San Agustin 3 and Langkaan 2	
	Using Alternative System	

ABSTRACT

Effective delivery system is one of the main goals of every dealer. Based on this maxim, this study looks into a more efficient alternative delivery system of a specific beverages and liquor products dealer named EGR Trading. Being an authorized distributor of different beverages and liquor from Coca-Cola Products, San Miguel Corporation and other suppliers, EGR is identified as one of the dealers that have the highest number of retail outlets. Determining how effective EGR Trading's delivery system is, through analyzing the distance travelled in every route for each designated area, is what the main focus of the study.

Specifically, the study aims to:

- 1. Determine the existing delivery system of the EGR Trading;
- 2. Develop a model using MTSP with the help of TORA; and
- 3. Analyze the existing system and the new model in terms of: (a) the route of delivery; and (b) the distance travelled by each delivery truck.

The researcher identified the existing delivery system of EGR Trading to its retail outlets within Dasmariñas City particularly in San Agustin 1, 2, and 3, Amuntay, Villa Catalina Subdivision, Villa Luisa Subdivision, Dasma Executive Village, City Homes Resortsville Subdivision, Solar Homes Subdivision, Green Breeze, and Langkaan 1 and 2. An interview was also conducted with EGR Trading personnel and essential data such as existing vehicles, existing delivery route, dealer's map location, outlet's map location, and the length of each route were gathered. The data was analyzed

with the help of TORA, a software that identifies the shortest distance from one retailer to another, and by applying Multiple Travelling Salesman Problem (MTSP), that aims to visit each retail outlets exactly once without repetition, to determine feasible routes.

An alternative delivery route for the three vehicles used by EGR Trading were identified that would result in reduced distance from one retailer to another in the same area as its total distance from and to EGR Trading in terms of their designated areas. The researcher used the same schedule of the three vehicles to conceptualize an alternative route in the context of Travelling Salesman Problem (TSP), thus a prospect that a reduced distance may be achieved using an alternative route in some of the areas covered. Based on the outcome of the study, the combination of the existing system and the alternative one is perceived to be more efficient than choosing the existing and the alternative route separately. Therefore, the objective of reducing the total distance of travelling might attained in conceptualized hybrid. be the