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ABSTRACT

A simulation technique has been developed to assess the impact of shallow reinjection
of geothermal wastewater at Palinpinon field to' the surrounding groundwater
resources. The physical model assumes single fracture connecting the reinjection and
the groundwater wells. Using the analytical solutions of the resulting coupled
dispersion-advection equation for the fracture flow and the diffusion equation for the
flow into the rock matrix, relative concentrations of chloride at various points within
the fracture and at observation points 4000 and 2000 meters away are calculated. For
porosities of 0.03 to 0.1 which is typical for welded tuffs and clay alteration products
which are the dominant rocks in the area, matrix diffusion was found to be an efficient

retardation mechanism for the dispersion of the waste fluids.

Boron dispersion was also modeled by taking into account its probable adsorption into
clays. Using reasonable estimates for the retardation coefficients for boron, adsorption

may delay its breakthrough by up to 100 days.

A general program coded in FORTRAN 77 has also been developed to evaluate the
general transient solutions of the mass transport equations in fractured porous media.
The method employed in the evaluation is the Gaﬁss-Legendre quadrature. The
technique provides insights into the gross behavior of reinjected fluids by putting
constraints on breakthrough times, relative concentrations of the contaminant along the
fracture and within the matrix and matrix retention of contaminants.
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NOTATION

Concentration in the cture .
Concentration in the matrix.

Input concentration.
. Relative concentration.
Diffusive flux perpendicular to the fracture axis.

The vélécity of water in the fracture.

The value of the longitudinal dispersion in the
direction of the flow.

Face retardation coefficient. -

Matrix 'toftuosify;

Free water molecular diffusion coefficient.

Fracture width. "

Matrix porosity.

‘Matrix retardation coefficient.

Coordinate along the ﬁ'acmre axis.
Decay constant equivalent to In2/t,.

Time.

Direction adjacent to the fractu
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Integration limits.
Calulated value of the relative concentrations.
Number of points for the Gauss-Legendre formula.

Integration variable of the general analytical solution.
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Function ERFC
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c=(b-a)2
d=(b+a)2
Subscript for vectors p and £. -

Index on the repeated sum of Eq. (4.7).

Initial value of}j, ;.

Final value ofj, k;,;-1.
Vector k. -

Vector p.

Repeated sum of Eq. (4.7).
Vector of weight factors, w;.

Vector of Legendre polynomial roots, z;.

Dummy argument of the complementary error function
defined as erfc(Y).
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